In this project, you'll define and train a DCGAN on a dataset of faces. Your goal is to get a generator network to generate new images of faces that look as realistic as possible!
To check out the Project, use any of these links:
g.pt and d.pt are the trained generator and discriminator files
The project will be broken down into a series of tasks from loading in data to defining and training adversarial networks. At the end of the notebook, you'll be able to visualize the results of your trained Generator to see how it performs; your generated samples should look like fairly realistic faces with small amounts of noise.
You'll be using the CelebFaces Attributes Dataset (CelebA) to train your adversarial networks.
This dataset is more complex than the number datasets (like MNIST or SVHN) you've been working with, and so, you should prepare to define deeper networks and train them for a longer time to get good results. It is suggested that you utilize a GPU for training.
Since the project's main focus is on building the GANs, we've done some of the pre-processing for you. Each of the CelebA images has been cropped to remove parts of the image that don't include a face, then resized down to 64x64x3 NumPy images. Some sample data is show below.
If you are working locally, you can download this data by clicking here
This is a zip file that you'll need to extract in the home directory of this notebook for further loading and processing. After extracting the data, you should be left with a directory of data processed_celeba_small/
# can comment out after executing
# !unzip processed_celeba_small.zip
data_dir = 'processed_celeba_small/'
import pickle as pkl
import matplotlib.pyplot as plt
import numpy as np
import problem_unittests as tests
#import helper
%matplotlib inline
The CelebA dataset contains over 200,000 celebrity images with annotations. Since you're going to be generating faces, you won't need the annotations, you'll only need the images. Note that these are color images with 3 color channels (RGB) each.
Since the project's main focus is on building the GANs, we've done some of the pre-processing for you. Each of the CelebA images has been cropped to remove parts of the image that don't include a face, then resized down to 64x64x3 NumPy images. This pre-processed dataset is a smaller subset of the very large CelebA data.
There are a few other steps that you'll need to transform this data and create a DataLoader.
Exercise: Complete the following get_dataloader
function, such that it satisfies these requirements:
- Your images should be square, Tensor images of size
image_size x image_size
in the x and y dimension. - Your function should return a DataLoader that shuffles and batches these Tensor images.
To create a dataset given a directory of images, it's recommended that you use PyTorch's ImageFolder wrapper, with a root directory processed_celeba_small/
and data transformation passed in.
# necessary imports
import torch
from torchvision import datasets
from torchvision import transforms
def get_dataloader(batch_size, image_size, data_dir='processed_celeba_small/'):
"""
Batch the neural network data using DataLoader
:param batch_size: The size of each batch; the number of images in a batch
:param img_size: The square size of the image data (x, y)
:param data_dir: Directory where image data is located
:return: DataLoader with batched data
"""
# TODO: Implement function and return a dataloader
transform = transforms.Compose([transforms.Resize(image_size),
transforms.ToTensor()])
image_dataset = datasets.ImageFolder(data_dir, transform)
print (image_dataset)
return torch.utils.data.DataLoader(image_dataset, batch_size = batch_size, shuffle=True)
Call the above function and create a dataloader to view images.
- You can decide on any reasonable
batch_size
parameter - Your
image_size
must be32
. Resizing the data to a smaller size will make for faster training, while still creating convincing images of faces!
# Define function hyperparameters
batch_size = 128
img_size = 32
# Call your function and get a dataloader
celeba_train_loader = get_dataloader(batch_size, img_size)
Dataset ImageFolder
Number of datapoints: 89931
Root Location: processed_celeba_small/
Transforms (if any): Compose(
Resize(size=32, interpolation=PIL.Image.BILINEAR)
ToTensor()
)
Target Transforms (if any): None
Next, you can view some images! You should seen square images of somewhat-centered faces.
Note: You'll need to convert the Tensor images into a NumPy type and transpose the dimensions to correctly display an image, suggested imshow
code is below, but it may not be perfect.
# helper display function
def imshow(img):
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
# obtain one batch of training images
dataiter = iter(celeba_train_loader)
images, _ = dataiter.next() # _ for no labels
# plot the images in the batch, along with the corresponding labels
fig = plt.figure(figsize=(20, 4))
plot_size=20
for idx in np.arange(plot_size):
ax = fig.add_subplot(2, plot_size/2, idx+1, xticks=[], yticks=[])
imshow(images[idx])
You need to do a bit of pre-processing; you know that the output of a tanh
activated generator will contain pixel values in a range from -1 to 1, and so, we need to rescale our training images to a range of -1 to 1. (Right now, they are in a range from 0-1.)
# TODO: Complete the scale function
def scale(x, feature_range=(-1, 1)):
''' Scale takes in an image x and returns that image, scaled
with a feature_range of pixel values from -1 to 1.
This function assumes that the input x is already scaled from 0-1.'''
# assume x is scaled to (0, 1)
# scale to feature_range and return scaled x
# min_val, max_val = feature_range
# return x * (max_val - min_val) + min_val
return x*2-1 #it's always called with -1,1 so for speed
# check scaled range
# should be close to -1 to 1
img = images[0]
scaled_img = scale(img)
print('Min: ', scaled_img.min())
print('Max: ', scaled_img.max())
Min: tensor(-0.9059)
Max: tensor(0.8588)
A GAN is comprised of two adversarial networks, a discriminator and a generator.
Your first task will be to define the discriminator. This is a convolutional classifier like you've built before, only without any maxpooling layers. To deal with this complex data, it's suggested you use a deep network with normalization. You are also allowed to create any helper functions that may be useful.
- The inputs to the discriminator are 32x32x3 tensor images
- The output should be a single value that will indicate whether a given image is real or fake
import torch.nn as nn
import torch.nn.functional as F
# helper conv function
def conv(in_channels, out_channels, kernel_size, stride=2, padding=1, batch_norm=True):
"""Creates a convolutional layer, with optional batch normalization.
"""
layers = []
conv_layer = nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
kernel_size=kernel_size, stride=stride, padding=padding, bias=False)
layers.append(conv_layer)
if batch_norm:
layers.append(nn.BatchNorm2d(out_channels))
return nn.Sequential(*layers)
class Discriminator(nn.Module):
def __init__(self, conv_dim):
"""
Initialize the Discriminator Module
:param conv_dim: The depth of the first convolutional layer
"""
super(Discriminator, self).__init__()
self.conv_dim = conv_dim
self.conv1 = conv(3, conv_dim, 4, batch_norm=False) # (16, 16, conv_dim)
self.conv2 = conv(conv_dim, conv_dim*2, 4) # (8, 8, conv_dim*2)
self.conv3 = conv(conv_dim*2, conv_dim*4, 4) # (4, 4, conv_dim*4)
self.conv4 = conv(conv_dim*4, conv_dim*8, 4) # (2, 2, conv_dim*8)
self.classifier = nn.Linear(conv_dim*8*2*2, 1)
def forward(self, x):
"""
Forward propagation of the neural network
:param x: The input to the neural network
:return: Discriminator logits; the output of the neural network
"""
# define feedforward behavior
out = F.selu(self.conv1(x), 0.2)
out = F.selu(self.conv2(out), 0.2)
out = F.selu(self.conv3(out), 0.2)
out = F.selu(self.conv4(out), 0.2)
out = out.view(-1, self.conv_dim*8*2*2)
out = self.classifier(out)
return out
tests.test_discriminator(Discriminator)
Tests Passed
The generator should upsample an input and generate a new image of the same size as our training data 32x32x3
. This should be mostly transpose convolutional layers with normalization applied to the outputs.
- The inputs to the generator are vectors of some length
z_size
- The output should be a image of shape
32x32x3
def deconv(in_channels, out_channels, kernel_size, stride=2, padding=1, batch_norm=True):
layers = []
layers.append(nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding, bias=False))
if batch_norm:
layers.append(nn.BatchNorm2d(out_channels))
return nn.Sequential(*layers)
class Generator(nn.Module):
def __init__(self, z_size, conv_dim):
"""
Initialize the Generator Module
:param z_size: The length of the input latent vector, z
:param conv_dim: The depth of the inputs to the *last* transpose convolutional layer
"""
super(Generator, self).__init__()
self.conv_dim = conv_dim
self.fc = nn.Linear(z_size, conv_dim*8*2*2)
self.t_conv1 = deconv(conv_dim*8, conv_dim*4, 4)
self.t_conv2 = deconv(conv_dim*4, conv_dim*2, 4)
self.t_conv3 = deconv(conv_dim*2, conv_dim, 4)
self.t_conv4 = deconv(conv_dim, 3, 4, batch_norm=False)
def forward(self, x):
"""
Forward propagation of the neural network
:param x: The input to the neural network
:return: A 32x32x3 Tensor image as output
"""
# define feedforward behavior
out = self.fc(x)
out = out.view(-1, self.conv_dim*8, 2, 2) # (batch_size, depth, 4, 4)
out = F.relu(self.t_conv1(out))
out = F.relu(self.t_conv2(out))
out = F.relu(self.t_conv3(out))
# last layer: tanh activation instead of relu
out = self.t_conv4(out)
out = F.tanh(out)
return out
tests.test_generator(Generator)
Tests Passed
To help your models converge, you should initialize the weights of the convolutional and linear layers in your model. From reading the original DCGAN paper, they say:
All weights were initialized from a zero-centered Normal distribution with standard deviation 0.02.
So, your next task will be to define a weight initialization function that does just this!
You can refer back to the lesson on weight initialization or even consult existing model code, such as that from the networks.py
file in CycleGAN Github repository to help you complete this function.
- This should initialize only convolutional and linear layers
- Initialize the weights to a normal distribution, centered around 0, with a standard deviation of 0.02.
- The bias terms, if they exist, may be left alone or set to 0.
from torch.nn import init
def weights_init_normal(m):
"""
Applies initial weights to certain layers in a model: convolutional and linear
The weights are taken from a normal distribution
with mean = 0, std dev = 0.02.
:param m: A module or layer in a network
"""
# classname will be something like:
# `Conv`, `BatchNorm2d`, `Linear`, etc.
classname = m.__class__.__name__
isConvolution = classname.find('Conv') != -1
isLinear = classname.find('Linear') != -1
if (hasattr(m, 'weight') and isConvolution or isLinear):
init.normal_(m.weight.data, 0.0, 0.02)
Define your models' hyperparameters and instantiate the discriminator and generator from the classes defined above. Make sure you've passed in the correct input arguments.
def build_network(d_conv_dim, g_conv_dim, z_size):
# define discriminator and generator
D = Discriminator(d_conv_dim)
G = Generator(z_size=z_size, conv_dim=g_conv_dim)
# initialize model weights
D.apply(weights_init_normal)
G.apply(weights_init_normal)
print(D)
print()
print(G)
return D, G
# Define model hyperparams
d_conv_dim = 64
g_conv_dim = 64
z_size = 100
D, G = build_network(d_conv_dim, g_conv_dim, z_size)
Discriminator(
(conv1): Sequential(
(0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
)
(conv2): Sequential(
(0): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv3): Sequential(
(0): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(conv4): Sequential(
(0): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(classifier): Linear(in_features=2048, out_features=1, bias=True)
)
Generator(
(fc): Linear(in_features=100, out_features=2048, bias=True)
(t_conv1): Sequential(
(0): ConvTranspose2d(512, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(t_conv2): Sequential(
(0): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(t_conv3): Sequential(
(0): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(t_conv4): Sequential(
(0): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
)
)
Check if you can train on GPU. Here, we'll set this as a boolean variable train_on_gpu
. Later, you'll be responsible for making sure that
- Models,
- Model inputs, and
- Loss function arguments
Are moved to GPU, where appropriate.
import torch
# Check for a GPU
train_on_gpu = torch.cuda.is_available()
if not train_on_gpu:
print('No GPU found. Please use a GPU to train your neural network.')
else:
print('Training on GPU!')
Training on GPU!
Now we need to calculate the losses for both types of adversarial networks.
- For the discriminator, the total loss is the sum of the losses for real and fake images,
d_loss = d_real_loss + d_fake_loss
.
- Remember that we want the discriminator to output 1 for real images and 0 for fake images, so we need to set up the losses to reflect that.
The generator loss will look similar only with flipped labels. The generator's goal is to get the discriminator to think its generated images are real.
You may choose to use either cross entropy or a least squares error loss to complete the following real_loss
and fake_loss
functions.
def real_loss(D_out):
'''
Calculates how close discriminator outputs are to being real.
param, D_out: discriminator logits
return: real loss
'''
labels = torch.ones(D_out.size(0)) #D_out[0] is batch size
if train_on_gpu:
labels = labels.cuda()
criterion = nn.BCEWithLogitsLoss()
return criterion(D_out.squeeze(), labels)
def fake_loss(D_out):
'''
Calculates how close discriminator outputs are to being fake.
param, D_out: discriminator logits
return: fake loss
'''
labels = torch.zeros(D_out.size(0)) #D_out[0] is batch size
if train_on_gpu:
labels = labels.cuda()
criterion = nn.BCEWithLogitsLoss()
return criterion(D_out.squeeze(), labels)
Define optimizers for your models with appropriate hyperparameters.
import torch.optim as optim
lr = 0.0002
beta1=0.5
beta2=0.999 # default value
# Create optimizers for the discriminator D and generator G
d_optimizer = optim.Adam(D.parameters(), lr, [beta1, beta2])
g_optimizer = optim.Adam(G.parameters(), lr, [beta1, beta2])
Training will involve alternating between training the discriminator and the generator. You'll use your functions real_loss
and fake_loss
to help you calculate the discriminator losses.
- You should train the discriminator by alternating on real and fake images
- Then the generator, which tries to trick the discriminator and should have an opposing loss function
You've been given some code to print out some loss statistics and save some generated "fake" samples.
Keep in mind that, if you've moved your models to GPU, you'll also have to move any model inputs to GPU.
from workspace_utils import active_session
def train(D, G, n_epochs, print_every=50):
'''Trains adversarial networks for some number of epochs
param, D: the discriminator network
param, G: the generator network
param, n_epochs: number of epochs to train for
param, print_every: when to print and record the models' losses
return: D and G losses'''
# move models to GPU
if train_on_gpu:
D.cuda()
G.cuda()
# keep track of loss and generated, "fake" samples
samples = []
losses = []
# Get some fixed data for sampling. These are images that are held
# constant throughout training, and allow us to inspect the model's performance
sample_size=16
fixed_z = np.random.uniform(-1, 1, size=(sample_size, z_size))
fixed_z = torch.from_numpy(fixed_z).float()
# move z to GPU if available
if train_on_gpu:
fixed_z = fixed_z.cuda()
# epoch training loop
for epoch in range(n_epochs):
# batch training loop
for batch_i, (real_images, _) in enumerate(celeba_train_loader):
batch_size = real_images.size(0)
real_images = scale(real_images)
# ===============================================
# YOUR CODE HERE: TRAIN THE NETWORKS
# ===============================================
# 1. Train the discriminator on real and fake images
d_optimizer.zero_grad()
if train_on_gpu:
real_images = real_images.cuda()
D_real = D(real_images)
d_real_loss = real_loss(D_real)
z = np.random.uniform(-1, 1, size = (batch_size, z_size))
z = torch.from_numpy(z).float()
if train_on_gpu:
z = z.cuda()
fake_images = G(z)
D_fake = D(fake_images)
d_fake_loss = fake_loss(D_fake)
d_loss = d_real_loss + d_fake_loss
d_loss.backward()
d_optimizer.step()
# 2. Train the generator with an adversarial loss
g_optimizer.zero_grad()
z = np.random.uniform(-1, 1, size = (batch_size, z_size))
z = torch.from_numpy(z).float()
if train_on_gpu:
z = z.cuda()
fake_images = G(z)
D_fake = D(fake_images)
g_loss = real_loss(D_fake)
g_loss.backward()
g_optimizer.step()
# ===============================================
# END OF YOUR CODE
# ===============================================
# Print some loss stats
if batch_i % print_every == 0:
# append discriminator loss and generator loss
losses.append((d_loss.item(), g_loss.item()))
# print discriminator and generator loss
print('Epoch [{:5d}/{:5d}] | batch: {:5d} | d_loss: {:6.4f} | g_loss: {:6.4f}'.format(
epoch+1, n_epochs, batch_i+1, d_loss.item(), g_loss.item()))
## AFTER EACH EPOCH##
torch.save(G.state_dict(), 'g'+str(epoch+1)+'.pt')
torch.save(D.state_dict(), 'd'+str(epoch+1)+'.pt')
# this code assumes your generator is named G, feel free to change the name
# generate and save sample, fake images
G.eval() # for generating samples
samples_z = G(fixed_z)
samples.append(samples_z)
G.train() # back to training mode
print('---------------Epoch [{:5d}/{:5d}]---------------'.format(epoch+1, n_epochs))
# Save training generator samples
with open('train_samples.pkl', 'wb') as f:
pkl.dump(samples, f)
# finally return losses
return losses
Set your number of training epochs and train your GAN!
# G.load_state_dict(torch.load('g.pt'))
# D.load_state_dict(torch.load('d.pt'))
# set number of epochs
n_epochs = 20
# call training function
with active_session():
losses = train(D, G, n_epochs=n_epochs)
Epoch [ 1/ 20] | batch: 1 | d_loss: 0.8111 | g_loss: 1.2661
Epoch [ 1/ 20] | batch: 51 | d_loss: 0.9952 | g_loss: 2.3659
Epoch [ 1/ 20] | batch: 101 | d_loss: 0.9237 | g_loss: 2.7058
Epoch [ 1/ 20] | batch: 151 | d_loss: 0.9340 | g_loss: 1.3858
Epoch [ 1/ 20] | batch: 201 | d_loss: 0.9927 | g_loss: 1.6645
Epoch [ 1/ 20] | batch: 251 | d_loss: 0.8794 | g_loss: 1.3428
Epoch [ 1/ 20] | batch: 301 | d_loss: 1.0240 | g_loss: 1.8747
Epoch [ 1/ 20] | batch: 351 | d_loss: 0.8578 | g_loss: 2.3406
Epoch [ 1/ 20] | batch: 401 | d_loss: 1.0471 | g_loss: 1.4166
Epoch [ 1/ 20] | batch: 451 | d_loss: 0.8953 | g_loss: 2.2885
Epoch [ 1/ 20] | batch: 501 | d_loss: 0.8606 | g_loss: 1.5577
Epoch [ 1/ 20] | batch: 551 | d_loss: 0.8905 | g_loss: 1.9201
Epoch [ 1/ 20] | batch: 601 | d_loss: 0.9602 | g_loss: 2.0931
Epoch [ 1/ 20] | batch: 651 | d_loss: 0.9449 | g_loss: 2.2206
Epoch [ 1/ 20] | batch: 701 | d_loss: 1.0528 | g_loss: 1.5514
---------------Epoch [ 1/ 20]---------------
Epoch [ 2/ 20] | batch: 1 | d_loss: 0.8771 | g_loss: 1.3734
Epoch [ 2/ 20] | batch: 51 | d_loss: 1.0019 | g_loss: 1.2820
Epoch [ 2/ 20] | batch: 101 | d_loss: 0.9900 | g_loss: 1.6812
Epoch [ 2/ 20] | batch: 151 | d_loss: 1.0659 | g_loss: 2.1863
Epoch [ 2/ 20] | batch: 201 | d_loss: 0.9917 | g_loss: 1.6778
Epoch [ 2/ 20] | batch: 251 | d_loss: 0.8652 | g_loss: 1.5668
Epoch [ 2/ 20] | batch: 301 | d_loss: 0.7992 | g_loss: 2.3568
Epoch [ 2/ 20] | batch: 351 | d_loss: 1.0523 | g_loss: 1.2216
Epoch [ 2/ 20] | batch: 401 | d_loss: 1.0096 | g_loss: 2.4254
Epoch [ 2/ 20] | batch: 451 | d_loss: 1.1680 | g_loss: 1.1488
Epoch [ 2/ 20] | batch: 501 | d_loss: 0.9187 | g_loss: 1.2972
Epoch [ 2/ 20] | batch: 551 | d_loss: 0.9080 | g_loss: 1.9679
Epoch [ 2/ 20] | batch: 601 | d_loss: 1.0048 | g_loss: 2.4279
Epoch [ 2/ 20] | batch: 651 | d_loss: 1.2464 | g_loss: 1.1955
Epoch [ 2/ 20] | batch: 701 | d_loss: 1.0181 | g_loss: 2.1282
---------------Epoch [ 2/ 20]---------------
Epoch [ 3/ 20] | batch: 1 | d_loss: 0.9845 | g_loss: 3.0135
Epoch [ 3/ 20] | batch: 51 | d_loss: 0.8247 | g_loss: 2.0062
Epoch [ 3/ 20] | batch: 101 | d_loss: 0.9052 | g_loss: 2.0246
Epoch [ 3/ 20] | batch: 151 | d_loss: 0.8806 | g_loss: 1.8005
Epoch [ 3/ 20] | batch: 201 | d_loss: 1.1608 | g_loss: 1.1466
Epoch [ 3/ 20] | batch: 251 | d_loss: 1.0030 | g_loss: 1.7211
Epoch [ 3/ 20] | batch: 301 | d_loss: 1.2835 | g_loss: 1.8969
Epoch [ 3/ 20] | batch: 351 | d_loss: 0.8584 | g_loss: 1.6190
Epoch [ 3/ 20] | batch: 401 | d_loss: 0.7295 | g_loss: 1.6601
Epoch [ 3/ 20] | batch: 451 | d_loss: 1.0188 | g_loss: 1.8397
Epoch [ 3/ 20] | batch: 501 | d_loss: 1.2436 | g_loss: 2.5559
Epoch [ 3/ 20] | batch: 551 | d_loss: 1.0364 | g_loss: 2.0659
Epoch [ 3/ 20] | batch: 601 | d_loss: 1.0645 | g_loss: 1.2833
Epoch [ 3/ 20] | batch: 651 | d_loss: 0.8505 | g_loss: 2.2852
Epoch [ 3/ 20] | batch: 701 | d_loss: 0.9450 | g_loss: 1.7768
---------------Epoch [ 3/ 20]---------------
Epoch [ 4/ 20] | batch: 1 | d_loss: 0.9740 | g_loss: 1.1168
Epoch [ 4/ 20] | batch: 51 | d_loss: 0.9093 | g_loss: 1.2597
Epoch [ 4/ 20] | batch: 101 | d_loss: 1.0745 | g_loss: 0.9085
Epoch [ 4/ 20] | batch: 151 | d_loss: 0.7689 | g_loss: 1.8919
Epoch [ 4/ 20] | batch: 201 | d_loss: 1.2617 | g_loss: 3.2608
Epoch [ 4/ 20] | batch: 251 | d_loss: 1.0825 | g_loss: 1.3975
Epoch [ 4/ 20] | batch: 301 | d_loss: 1.0497 | g_loss: 0.9826
Epoch [ 4/ 20] | batch: 351 | d_loss: 0.8368 | g_loss: 1.8344
Epoch [ 4/ 20] | batch: 401 | d_loss: 0.8927 | g_loss: 1.4510
Epoch [ 4/ 20] | batch: 451 | d_loss: 0.8737 | g_loss: 2.1484
Epoch [ 4/ 20] | batch: 501 | d_loss: 0.8620 | g_loss: 1.7640
Epoch [ 4/ 20] | batch: 551 | d_loss: 1.0488 | g_loss: 1.1829
Epoch [ 4/ 20] | batch: 601 | d_loss: 0.9488 | g_loss: 1.2433
Epoch [ 4/ 20] | batch: 651 | d_loss: 0.8552 | g_loss: 2.1256
Epoch [ 4/ 20] | batch: 701 | d_loss: 1.2086 | g_loss: 1.2018
---------------Epoch [ 4/ 20]---------------
Epoch [ 5/ 20] | batch: 1 | d_loss: 0.6779 | g_loss: 2.0733
Epoch [ 5/ 20] | batch: 51 | d_loss: 0.9240 | g_loss: 0.9773
Epoch [ 5/ 20] | batch: 101 | d_loss: 0.8876 | g_loss: 1.7137
Epoch [ 5/ 20] | batch: 151 | d_loss: 1.0030 | g_loss: 2.4516
Epoch [ 5/ 20] | batch: 201 | d_loss: 0.9148 | g_loss: 1.8731
Epoch [ 5/ 20] | batch: 251 | d_loss: 0.9607 | g_loss: 1.9129
Epoch [ 5/ 20] | batch: 301 | d_loss: 0.9252 | g_loss: 1.8296
Epoch [ 5/ 20] | batch: 351 | d_loss: 0.7578 | g_loss: 2.0952
Epoch [ 5/ 20] | batch: 401 | d_loss: 0.7759 | g_loss: 1.5163
Epoch [ 5/ 20] | batch: 451 | d_loss: 0.8367 | g_loss: 1.9044
Epoch [ 5/ 20] | batch: 501 | d_loss: 0.8096 | g_loss: 1.8013
Epoch [ 5/ 20] | batch: 551 | d_loss: 0.7723 | g_loss: 1.8913
Epoch [ 5/ 20] | batch: 601 | d_loss: 0.7605 | g_loss: 2.4772
Epoch [ 5/ 20] | batch: 651 | d_loss: 1.3507 | g_loss: 1.2231
Epoch [ 5/ 20] | batch: 701 | d_loss: 0.7732 | g_loss: 2.0357
---------------Epoch [ 5/ 20]---------------
Epoch [ 6/ 20] | batch: 1 | d_loss: 0.8181 | g_loss: 1.4688
Epoch [ 6/ 20] | batch: 51 | d_loss: 1.3336 | g_loss: 1.3665
Epoch [ 6/ 20] | batch: 101 | d_loss: 0.8859 | g_loss: 1.9091
Epoch [ 6/ 20] | batch: 151 | d_loss: 0.8380 | g_loss: 2.1336
Epoch [ 6/ 20] | batch: 201 | d_loss: 0.8269 | g_loss: 3.3221
Epoch [ 6/ 20] | batch: 251 | d_loss: 0.9188 | g_loss: 1.9334
Epoch [ 6/ 20] | batch: 301 | d_loss: 0.9195 | g_loss: 1.7430
Epoch [ 6/ 20] | batch: 351 | d_loss: 1.2432 | g_loss: 3.4875
Epoch [ 6/ 20] | batch: 401 | d_loss: 0.7508 | g_loss: 1.7305
Epoch [ 6/ 20] | batch: 451 | d_loss: 0.9282 | g_loss: 1.9829
Epoch [ 6/ 20] | batch: 501 | d_loss: 0.8910 | g_loss: 2.0563
Epoch [ 6/ 20] | batch: 551 | d_loss: 0.7907 | g_loss: 1.6141
Epoch [ 6/ 20] | batch: 601 | d_loss: 0.8585 | g_loss: 2.6222
Epoch [ 6/ 20] | batch: 651 | d_loss: 0.7723 | g_loss: 1.0951
Epoch [ 6/ 20] | batch: 701 | d_loss: 0.8480 | g_loss: 2.0792
---------------Epoch [ 6/ 20]---------------
Epoch [ 7/ 20] | batch: 1 | d_loss: 0.8413 | g_loss: 1.3066
Epoch [ 7/ 20] | batch: 51 | d_loss: 0.7940 | g_loss: 2.6432
Epoch [ 7/ 20] | batch: 101 | d_loss: 0.8089 | g_loss: 1.8077
Epoch [ 7/ 20] | batch: 151 | d_loss: 0.9595 | g_loss: 1.6319
Epoch [ 7/ 20] | batch: 201 | d_loss: 1.0729 | g_loss: 0.9551
Epoch [ 7/ 20] | batch: 251 | d_loss: 0.9064 | g_loss: 2.4957
Epoch [ 7/ 20] | batch: 301 | d_loss: 0.7105 | g_loss: 2.1476
Epoch [ 7/ 20] | batch: 351 | d_loss: 1.0778 | g_loss: 2.9749
Epoch [ 7/ 20] | batch: 401 | d_loss: 0.9246 | g_loss: 1.3092
Epoch [ 7/ 20] | batch: 451 | d_loss: 1.0882 | g_loss: 0.7023
Epoch [ 7/ 20] | batch: 501 | d_loss: 1.0619 | g_loss: 1.6870
Epoch [ 7/ 20] | batch: 551 | d_loss: 0.8053 | g_loss: 2.0815
Epoch [ 7/ 20] | batch: 601 | d_loss: 0.7979 | g_loss: 2.2491
Epoch [ 7/ 20] | batch: 651 | d_loss: 0.8395 | g_loss: 1.9564
Epoch [ 7/ 20] | batch: 701 | d_loss: 1.0466 | g_loss: 1.3503
---------------Epoch [ 7/ 20]---------------
Epoch [ 8/ 20] | batch: 1 | d_loss: 0.6671 | g_loss: 1.4386
Epoch [ 8/ 20] | batch: 51 | d_loss: 0.9737 | g_loss: 1.9353
Epoch [ 8/ 20] | batch: 101 | d_loss: 0.7338 | g_loss: 1.6522
Epoch [ 8/ 20] | batch: 151 | d_loss: 0.8512 | g_loss: 2.1538
Epoch [ 8/ 20] | batch: 201 | d_loss: 0.7490 | g_loss: 2.2567
Epoch [ 8/ 20] | batch: 251 | d_loss: 0.8791 | g_loss: 2.4892
Epoch [ 8/ 20] | batch: 301 | d_loss: 0.7260 | g_loss: 1.8245
Epoch [ 8/ 20] | batch: 351 | d_loss: 0.8386 | g_loss: 2.1277
Epoch [ 8/ 20] | batch: 401 | d_loss: 0.9722 | g_loss: 2.4713
Epoch [ 8/ 20] | batch: 451 | d_loss: 0.6980 | g_loss: 2.2593
Epoch [ 8/ 20] | batch: 501 | d_loss: 1.0766 | g_loss: 3.4284
Epoch [ 8/ 20] | batch: 551 | d_loss: 0.9441 | g_loss: 2.4267
Epoch [ 8/ 20] | batch: 601 | d_loss: 0.9615 | g_loss: 1.1553
Epoch [ 8/ 20] | batch: 651 | d_loss: 0.9098 | g_loss: 2.4200
Epoch [ 8/ 20] | batch: 701 | d_loss: 0.8843 | g_loss: 1.3202
---------------Epoch [ 8/ 20]---------------
Epoch [ 9/ 20] | batch: 1 | d_loss: 0.7078 | g_loss: 1.8200
Epoch [ 9/ 20] | batch: 51 | d_loss: 1.0578 | g_loss: 1.2410
Epoch [ 9/ 20] | batch: 101 | d_loss: 0.8762 | g_loss: 1.8029
Epoch [ 9/ 20] | batch: 151 | d_loss: 0.8846 | g_loss: 1.5970
Epoch [ 9/ 20] | batch: 201 | d_loss: 0.9776 | g_loss: 3.1247
Epoch [ 9/ 20] | batch: 251 | d_loss: 0.7748 | g_loss: 1.2802
Epoch [ 9/ 20] | batch: 301 | d_loss: 0.7308 | g_loss: 2.0371
Epoch [ 9/ 20] | batch: 351 | d_loss: 0.9546 | g_loss: 1.3827
Epoch [ 9/ 20] | batch: 401 | d_loss: 0.9979 | g_loss: 2.7320
Epoch [ 9/ 20] | batch: 451 | d_loss: 0.8290 | g_loss: 1.6430
Epoch [ 9/ 20] | batch: 501 | d_loss: 0.8173 | g_loss: 1.2279
Epoch [ 9/ 20] | batch: 551 | d_loss: 0.7015 | g_loss: 1.6330
Epoch [ 9/ 20] | batch: 601 | d_loss: 1.2070 | g_loss: 2.3610
Epoch [ 9/ 20] | batch: 651 | d_loss: 1.2740 | g_loss: 0.5588
Epoch [ 9/ 20] | batch: 701 | d_loss: 0.8654 | g_loss: 3.2853
---------------Epoch [ 9/ 20]---------------
Epoch [ 10/ 20] | batch: 1 | d_loss: 1.0506 | g_loss: 1.6972
Epoch [ 10/ 20] | batch: 51 | d_loss: 0.8623 | g_loss: 1.2557
Epoch [ 10/ 20] | batch: 101 | d_loss: 0.7753 | g_loss: 1.7687
Epoch [ 10/ 20] | batch: 151 | d_loss: 0.6656 | g_loss: 1.5877
Epoch [ 10/ 20] | batch: 201 | d_loss: 0.9033 | g_loss: 1.9987
Epoch [ 10/ 20] | batch: 251 | d_loss: 0.8301 | g_loss: 1.5547
Epoch [ 10/ 20] | batch: 301 | d_loss: 0.9235 | g_loss: 2.9890
Epoch [ 10/ 20] | batch: 351 | d_loss: 0.8235 | g_loss: 1.8149
Epoch [ 10/ 20] | batch: 401 | d_loss: 0.6793 | g_loss: 2.3275
Epoch [ 10/ 20] | batch: 451 | d_loss: 0.7816 | g_loss: 3.2800
Epoch [ 10/ 20] | batch: 501 | d_loss: 0.7944 | g_loss: 1.7540
Epoch [ 10/ 20] | batch: 551 | d_loss: 0.9119 | g_loss: 1.2870
Epoch [ 10/ 20] | batch: 601 | d_loss: 1.1382 | g_loss: 2.2872
Epoch [ 10/ 20] | batch: 651 | d_loss: 0.8099 | g_loss: 1.2067
Epoch [ 10/ 20] | batch: 701 | d_loss: 0.6867 | g_loss: 1.9326
---------------Epoch [ 10/ 20]---------------
Epoch [ 11/ 20] | batch: 1 | d_loss: 0.8320 | g_loss: 1.1754
Epoch [ 11/ 20] | batch: 51 | d_loss: 0.6943 | g_loss: 1.6403
Epoch [ 11/ 20] | batch: 101 | d_loss: 0.9558 | g_loss: 3.0082
Epoch [ 11/ 20] | batch: 151 | d_loss: 0.8052 | g_loss: 2.7568
Epoch [ 11/ 20] | batch: 201 | d_loss: 0.7848 | g_loss: 1.9918
Epoch [ 11/ 20] | batch: 251 | d_loss: 0.8150 | g_loss: 1.4829
Epoch [ 11/ 20] | batch: 301 | d_loss: 0.7332 | g_loss: 2.1810
Epoch [ 11/ 20] | batch: 351 | d_loss: 0.8433 | g_loss: 1.8746
Epoch [ 11/ 20] | batch: 401 | d_loss: 0.6758 | g_loss: 1.3094
Epoch [ 11/ 20] | batch: 451 | d_loss: 0.8459 | g_loss: 1.6590
Epoch [ 11/ 20] | batch: 501 | d_loss: 0.8478 | g_loss: 1.3339
Epoch [ 11/ 20] | batch: 551 | d_loss: 0.8105 | g_loss: 2.5290
Epoch [ 11/ 20] | batch: 601 | d_loss: 0.8847 | g_loss: 2.9163
Epoch [ 11/ 20] | batch: 651 | d_loss: 0.9158 | g_loss: 3.0656
Epoch [ 11/ 20] | batch: 701 | d_loss: 0.7829 | g_loss: 2.7488
---------------Epoch [ 11/ 20]---------------
Epoch [ 12/ 20] | batch: 1 | d_loss: 0.7352 | g_loss: 1.9948
Epoch [ 12/ 20] | batch: 51 | d_loss: 0.9262 | g_loss: 1.6865
Epoch [ 12/ 20] | batch: 101 | d_loss: 0.8878 | g_loss: 2.6026
Epoch [ 12/ 20] | batch: 151 | d_loss: 0.7256 | g_loss: 1.7047
Epoch [ 12/ 20] | batch: 201 | d_loss: 0.8756 | g_loss: 1.5276
Epoch [ 12/ 20] | batch: 251 | d_loss: 1.1679 | g_loss: 0.8444
Epoch [ 12/ 20] | batch: 301 | d_loss: 0.6936 | g_loss: 2.6643
Epoch [ 12/ 20] | batch: 351 | d_loss: 0.8501 | g_loss: 2.4405
Epoch [ 12/ 20] | batch: 401 | d_loss: 0.7047 | g_loss: 2.2575
Epoch [ 12/ 20] | batch: 451 | d_loss: 0.6888 | g_loss: 2.6093
Epoch [ 12/ 20] | batch: 501 | d_loss: 0.7325 | g_loss: 1.3854
Epoch [ 12/ 20] | batch: 551 | d_loss: 1.0565 | g_loss: 3.9395
Epoch [ 12/ 20] | batch: 601 | d_loss: 0.7159 | g_loss: 3.6967
Epoch [ 12/ 20] | batch: 651 | d_loss: 0.7333 | g_loss: 1.4379
Epoch [ 12/ 20] | batch: 701 | d_loss: 0.7963 | g_loss: 1.4610
---------------Epoch [ 12/ 20]---------------
Epoch [ 13/ 20] | batch: 1 | d_loss: 0.6865 | g_loss: 2.8950
Epoch [ 13/ 20] | batch: 51 | d_loss: 0.9207 | g_loss: 1.5573
Epoch [ 13/ 20] | batch: 101 | d_loss: 1.2883 | g_loss: 1.4500
Epoch [ 13/ 20] | batch: 151 | d_loss: 0.8684 | g_loss: 2.6025
Epoch [ 13/ 20] | batch: 201 | d_loss: 0.7481 | g_loss: 1.6527
Epoch [ 13/ 20] | batch: 251 | d_loss: 0.8783 | g_loss: 1.3452
Epoch [ 13/ 20] | batch: 301 | d_loss: 0.7375 | g_loss: 2.0968
Epoch [ 13/ 20] | batch: 351 | d_loss: 0.6422 | g_loss: 2.5757
Epoch [ 13/ 20] | batch: 401 | d_loss: 0.7280 | g_loss: 1.3058
Epoch [ 13/ 20] | batch: 451 | d_loss: 0.7422 | g_loss: 1.4346
Epoch [ 13/ 20] | batch: 501 | d_loss: 0.9727 | g_loss: 3.5498
Epoch [ 13/ 20] | batch: 551 | d_loss: 0.6053 | g_loss: 2.1011
Epoch [ 13/ 20] | batch: 601 | d_loss: 1.5844 | g_loss: 0.5962
Epoch [ 13/ 20] | batch: 651 | d_loss: 0.5554 | g_loss: 2.5573
Epoch [ 13/ 20] | batch: 701 | d_loss: 0.6035 | g_loss: 2.5171
---------------Epoch [ 13/ 20]---------------
Epoch [ 14/ 20] | batch: 1 | d_loss: 0.7339 | g_loss: 3.6615
Epoch [ 14/ 20] | batch: 51 | d_loss: 0.8485 | g_loss: 2.3583
Epoch [ 14/ 20] | batch: 101 | d_loss: 0.6495 | g_loss: 1.8807
Epoch [ 14/ 20] | batch: 151 | d_loss: 0.5651 | g_loss: 1.4821
Epoch [ 14/ 20] | batch: 201 | d_loss: 0.7518 | g_loss: 2.2164
Epoch [ 14/ 20] | batch: 251 | d_loss: 0.7359 | g_loss: 1.7076
Epoch [ 14/ 20] | batch: 301 | d_loss: 1.4818 | g_loss: 3.6353
Epoch [ 14/ 20] | batch: 351 | d_loss: 0.8072 | g_loss: 3.1063
Epoch [ 14/ 20] | batch: 401 | d_loss: 0.6912 | g_loss: 1.5440
Epoch [ 14/ 20] | batch: 451 | d_loss: 0.7894 | g_loss: 1.2850
Epoch [ 14/ 20] | batch: 501 | d_loss: 0.8157 | g_loss: 3.7143
Epoch [ 14/ 20] | batch: 551 | d_loss: 0.8888 | g_loss: 4.6283
Epoch [ 14/ 20] | batch: 601 | d_loss: 0.7662 | g_loss: 1.5938
Epoch [ 14/ 20] | batch: 651 | d_loss: 0.8177 | g_loss: 1.5437
Epoch [ 14/ 20] | batch: 701 | d_loss: 1.0911 | g_loss: 1.2381
---------------Epoch [ 14/ 20]---------------
Epoch [ 15/ 20] | batch: 1 | d_loss: 0.6332 | g_loss: 2.4432
Epoch [ 15/ 20] | batch: 51 | d_loss: 0.5178 | g_loss: 2.3152
Epoch [ 15/ 20] | batch: 101 | d_loss: 0.5655 | g_loss: 2.4855
Epoch [ 15/ 20] | batch: 151 | d_loss: 1.4360 | g_loss: 4.9096
Epoch [ 15/ 20] | batch: 201 | d_loss: 0.6065 | g_loss: 1.9198
Epoch [ 15/ 20] | batch: 251 | d_loss: 0.6617 | g_loss: 2.7955
Epoch [ 15/ 20] | batch: 301 | d_loss: 0.5642 | g_loss: 2.5870
Epoch [ 15/ 20] | batch: 351 | d_loss: 0.7548 | g_loss: 1.6740
Epoch [ 15/ 20] | batch: 401 | d_loss: 0.7114 | g_loss: 1.2314
Epoch [ 15/ 20] | batch: 451 | d_loss: 0.7264 | g_loss: 2.8277
Epoch [ 15/ 20] | batch: 501 | d_loss: 0.8249 | g_loss: 1.9137
Epoch [ 15/ 20] | batch: 551 | d_loss: 0.6711 | g_loss: 1.9008
Epoch [ 15/ 20] | batch: 601 | d_loss: 0.7163 | g_loss: 1.7807
Epoch [ 15/ 20] | batch: 651 | d_loss: 0.7018 | g_loss: 1.8669
Epoch [ 15/ 20] | batch: 701 | d_loss: 1.2824 | g_loss: 0.8433
---------------Epoch [ 15/ 20]---------------
Epoch [ 16/ 20] | batch: 1 | d_loss: 0.7795 | g_loss: 1.9912
Epoch [ 16/ 20] | batch: 51 | d_loss: 0.7561 | g_loss: 2.7653
Epoch [ 16/ 20] | batch: 101 | d_loss: 0.9359 | g_loss: 1.5608
Epoch [ 16/ 20] | batch: 151 | d_loss: 0.5931 | g_loss: 2.3988
Epoch [ 16/ 20] | batch: 201 | d_loss: 0.8050 | g_loss: 1.1277
Epoch [ 16/ 20] | batch: 251 | d_loss: 0.4762 | g_loss: 2.5125
Epoch [ 16/ 20] | batch: 301 | d_loss: 0.6604 | g_loss: 2.3707
Epoch [ 16/ 20] | batch: 351 | d_loss: 1.1260 | g_loss: 1.0176
Epoch [ 16/ 20] | batch: 401 | d_loss: 0.5498 | g_loss: 2.5035
Epoch [ 16/ 20] | batch: 451 | d_loss: 0.6702 | g_loss: 2.3546
Epoch [ 16/ 20] | batch: 501 | d_loss: 0.5987 | g_loss: 2.7054
Epoch [ 16/ 20] | batch: 551 | d_loss: 0.6563 | g_loss: 1.9455
Epoch [ 16/ 20] | batch: 601 | d_loss: 0.4369 | g_loss: 2.3982
Epoch [ 16/ 20] | batch: 651 | d_loss: 0.6192 | g_loss: 1.6578
Epoch [ 16/ 20] | batch: 701 | d_loss: 0.8847 | g_loss: 3.6035
---------------Epoch [ 16/ 20]---------------
Epoch [ 17/ 20] | batch: 1 | d_loss: 0.8319 | g_loss: 1.7466
Epoch [ 17/ 20] | batch: 51 | d_loss: 0.8202 | g_loss: 2.0495
Epoch [ 17/ 20] | batch: 101 | d_loss: 0.9077 | g_loss: 2.2762
Epoch [ 17/ 20] | batch: 151 | d_loss: 0.9110 | g_loss: 1.5152
Epoch [ 17/ 20] | batch: 201 | d_loss: 0.6959 | g_loss: 3.1359
Epoch [ 17/ 20] | batch: 251 | d_loss: 0.6086 | g_loss: 3.1093
Epoch [ 17/ 20] | batch: 301 | d_loss: 0.9669 | g_loss: 3.7573
Epoch [ 17/ 20] | batch: 351 | d_loss: 0.6061 | g_loss: 2.2916
Epoch [ 17/ 20] | batch: 401 | d_loss: 1.3833 | g_loss: 0.8206
Epoch [ 17/ 20] | batch: 451 | d_loss: 0.7337 | g_loss: 1.2652
Epoch [ 17/ 20] | batch: 501 | d_loss: 0.5545 | g_loss: 2.2966
Epoch [ 17/ 20] | batch: 551 | d_loss: 0.4312 | g_loss: 2.7339
Epoch [ 17/ 20] | batch: 601 | d_loss: 1.2815 | g_loss: 4.5698
Epoch [ 17/ 20] | batch: 651 | d_loss: 0.5700 | g_loss: 2.5264
Epoch [ 17/ 20] | batch: 701 | d_loss: 0.6704 | g_loss: 3.2834
---------------Epoch [ 17/ 20]---------------
Epoch [ 18/ 20] | batch: 1 | d_loss: 0.4970 | g_loss: 2.2410
Epoch [ 18/ 20] | batch: 51 | d_loss: 0.6295 | g_loss: 4.3854
Epoch [ 18/ 20] | batch: 101 | d_loss: 0.6976 | g_loss: 4.3022
Epoch [ 18/ 20] | batch: 151 | d_loss: 1.0637 | g_loss: 2.3074
Epoch [ 18/ 20] | batch: 201 | d_loss: 0.6216 | g_loss: 1.5955
Epoch [ 18/ 20] | batch: 251 | d_loss: 0.6220 | g_loss: 2.0259
Epoch [ 18/ 20] | batch: 301 | d_loss: 0.4838 | g_loss: 2.7805
Epoch [ 18/ 20] | batch: 351 | d_loss: 0.7369 | g_loss: 3.7731
Epoch [ 18/ 20] | batch: 401 | d_loss: 0.6132 | g_loss: 1.4443
Epoch [ 18/ 20] | batch: 451 | d_loss: 0.5376 | g_loss: 3.1501
Epoch [ 18/ 20] | batch: 501 | d_loss: 0.4992 | g_loss: 1.8216
Epoch [ 18/ 20] | batch: 551 | d_loss: 0.9730 | g_loss: 3.3499
Epoch [ 18/ 20] | batch: 601 | d_loss: 0.4792 | g_loss: 2.8586
Epoch [ 18/ 20] | batch: 651 | d_loss: 0.6218 | g_loss: 2.6634
Epoch [ 18/ 20] | batch: 701 | d_loss: 0.6697 | g_loss: 2.0219
---------------Epoch [ 18/ 20]---------------
Epoch [ 19/ 20] | batch: 1 | d_loss: 0.5197 | g_loss: 1.8495
Epoch [ 19/ 20] | batch: 51 | d_loss: 0.5086 | g_loss: 1.6420
Epoch [ 19/ 20] | batch: 101 | d_loss: 0.6986 | g_loss: 1.1413
Epoch [ 19/ 20] | batch: 151 | d_loss: 0.6020 | g_loss: 1.8165
Epoch [ 19/ 20] | batch: 201 | d_loss: 0.9451 | g_loss: 1.4040
Epoch [ 19/ 20] | batch: 251 | d_loss: 0.4777 | g_loss: 3.1983
Epoch [ 19/ 20] | batch: 301 | d_loss: 0.9183 | g_loss: 4.0350
Epoch [ 19/ 20] | batch: 351 | d_loss: 0.4961 | g_loss: 2.3933
Epoch [ 19/ 20] | batch: 401 | d_loss: 0.8045 | g_loss: 1.3214
Epoch [ 19/ 20] | batch: 451 | d_loss: 0.5569 | g_loss: 2.1318
Epoch [ 19/ 20] | batch: 501 | d_loss: 0.5449 | g_loss: 2.9328
Epoch [ 19/ 20] | batch: 551 | d_loss: 0.5860 | g_loss: 1.8094
Epoch [ 19/ 20] | batch: 601 | d_loss: 0.5079 | g_loss: 1.9517
Epoch [ 19/ 20] | batch: 651 | d_loss: 0.5289 | g_loss: 2.2257
Epoch [ 19/ 20] | batch: 701 | d_loss: 0.5177 | g_loss: 1.4699
---------------Epoch [ 19/ 20]---------------
Epoch [ 20/ 20] | batch: 1 | d_loss: 0.8772 | g_loss: 3.8187
Epoch [ 20/ 20] | batch: 51 | d_loss: 1.0291 | g_loss: 4.1244
Epoch [ 20/ 20] | batch: 101 | d_loss: 0.4135 | g_loss: 2.1966
Epoch [ 20/ 20] | batch: 151 | d_loss: 0.4319 | g_loss: 2.7543
Epoch [ 20/ 20] | batch: 201 | d_loss: 0.5398 | g_loss: 2.8416
Epoch [ 20/ 20] | batch: 251 | d_loss: 0.4549 | g_loss: 2.5017
Epoch [ 20/ 20] | batch: 301 | d_loss: 0.6065 | g_loss: 2.1791
Epoch [ 20/ 20] | batch: 351 | d_loss: 0.3795 | g_loss: 3.5890
Epoch [ 20/ 20] | batch: 401 | d_loss: 0.6528 | g_loss: 1.6973
Epoch [ 20/ 20] | batch: 451 | d_loss: 0.5359 | g_loss: 1.7315
Epoch [ 20/ 20] | batch: 501 | d_loss: 0.3617 | g_loss: 3.3402
Epoch [ 20/ 20] | batch: 551 | d_loss: 0.5715 | g_loss: 2.3122
Epoch [ 20/ 20] | batch: 601 | d_loss: 0.5038 | g_loss: 2.7294
Epoch [ 20/ 20] | batch: 651 | d_loss: 0.4265 | g_loss: 2.0100
Epoch [ 20/ 20] | batch: 701 | d_loss: 0.5678 | g_loss: 1.9734
---------------Epoch [ 20/ 20]---------------
Plot the training losses for the generator and discriminator, recorded after each epoch.
fig, ax = plt.subplots()
losses = np.array(losses)
plt.plot(losses.T[0], label='Discriminator', alpha=0.5)
plt.plot(losses.T[1], label='Generator', alpha=0.5)
plt.title("Training Losses")
plt.legend()
<matplotlib.legend.Legend at 0x7f13f4acc128>
View samples of images from the generator, and answer a question about the strengths and weaknesses of your trained models.
# helper function for viewing a list of passed in sample images
def view_samples(epoch, samples):
fig, axes = plt.subplots(figsize=(16,4), nrows=2, ncols=8, sharey=True, sharex=True)
for ax, img in zip(axes.flatten(), samples[epoch]):
img = img.detach().cpu().numpy()
img = np.transpose(img, (1, 2, 0))
img = ((img + 1)*255 / (2)).astype(np.uint8)
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
im = ax.imshow(img.reshape((32,32,3)))
# Load samples from generator, taken while training
with open('train_samples.pkl', 'rb') as f:
samples = pkl.load(f)
view_samples(-1, samples)
When you answer this question, consider the following factors:
- The dataset is biased; it is made of "celebrity" faces that are mostly white
- Model size; larger models have the opportunity to learn more features in a data feature space
- Optimization strategy; optimizers and number of epochs affect your final result
Answer: The training data does not have the complete face. Features like chins are not visible. As a results, the generated images miss chins. Data should preferably have the complete face.
Obtaining higher resolution images. I would like to study NVIDIA's face generation paper where they trained HD faces and can even merge two faces to crate a new one.
A larger model size with more hidden dimensions would work better but take more training time
Training for longer will be ueful as the discriminator loss is steadily decreasing anf the generator loss curve is jagged indicating, it is imagining new features well, many of which are incorrect, but that's a step in the right direction.
When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_face_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "problem_unittests.py" files in your submission.