-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Manacher.java
79 lines (70 loc) · 2.89 KB
/
Manacher.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
package com.jwetherell.algorithms.strings;
/**
* The longest palindromic substring or longest symmetric factor problem
* is the problem of finding a maximum-length contiguous substring of a given string that is also a palindrome.
* <p>
* The longest palindromic substring problem should not be confused with
* the different problem of finding the longest palindromic subsequence.
* <p>
* Manacher's algorithm finds the longest palindromic substring in linear time O(n); where n = length(input)
* <p>
* @see <a href="https://en.wikipedia.org/wiki/Longest_palindromic_substring#Manacher.27s_algorithm">Manacher's Algorithm (Wikipedia)</a>
* <br>
* @author Piotr Kruk <pka.kruk@gmail.com>
* @author Justin Wetherell <phishman3579@gmail.com>
*/
public class Manacher {
private Manacher() {}
/**
* This function implements Manacher's algorithm that finds
* the longest palindromic substring in a linear time
* If there is no unique longest palindromic substring it returns the first one to occur
*
* @param input
* @return the longest palindromic substring in input
*/
public static String getLongestPalindromicSubstring(String input) {
if (input == null)
return null;
final int length = input.length();
if (length == 0)
return "";
// arr represents input string in a way that will act the same for strings of even and uneven length
// i.e. '#' is placed between each letter from input
final char[] arr = new char[2 * length + 1];
for (int i = length - 1; i >= 0; i--) {
arr[2 * i + 1] = input.charAt(i);
arr[2 * i] = '#';
}
arr[2 * length] = '#';
final int arrLength = length * 2;
// LPS[i] - palindrome span(radius) with center at arr[i]
final int[] LPS = new int[arrLength + 1];
int p = 0;
for (int i = 1; i <= arrLength; i++) {
LPS[i] = 0;
if (LPS[p] + p >= i)
LPS[i] = Math.min(LPS[2 * p - i], p + LPS[p] - i);
while (i + LPS[i] + 1 <= arrLength && i - LPS[i] - 1 >= 0 && arr[i + LPS[i] + 1] == arr[i - LPS[i] - 1])
LPS[i]++;
if (p + LPS[p] < i + LPS[i])
p = i;
}
// find the palindrome with the biggest span
int valueMax = 0;
int indexMax = 0;
for (int i = 0; i < arrLength; i++) {
if (valueMax < LPS[i]) {
valueMax = LPS[i];
indexMax = i;
}
}
// reconstruct the palindrome given its index in LPS and span
final int palindromeSpan = valueMax / 2;
if (indexMax % 2 == 0) {
return input.substring(indexMax/2 - palindromeSpan, indexMax/2 + palindromeSpan);
} else {
return input.substring(indexMax/2 - palindromeSpan, indexMax/2 + palindromeSpan + 1);
}
}
}