forked from fmihpc/vlasiator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparameters.cpp
451 lines (381 loc) · 25.2 KB
/
parameters.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
/*
This file is part of Vlasiator.
Copyright 2010-2015 Finnish Meteorological Institute
*/
#include <cstdlib>
#include <iostream>
#include "parameters.h"
#include "readparameters.h"
#include <limits>
#include <set>
#include <unistd.h>
#ifndef NAN
#define NAN 0
#endif
using namespace std;
typedef Parameters P;
//Using numeric_limits<Real>::max() leads to FP exceptions inside boost programoptions, use a slightly smaller value to avoid...
const Real LARGE_REAL=1e20;
// Define static members:
int P::geometry = geometry::XYZ6D;
Real P::xmin = NAN;
Real P::xmax = NAN;
Real P::ymin = NAN;
Real P::ymax = NAN;
Real P::zmin = NAN;
Real P::zmax = NAN;
Real P::dx_ini = NAN;
Real P::dy_ini = NAN;
Real P::dz_ini = NAN;
Real P::backstreamradius = NAN;
Real P::backstreamvx = NAN;
Real P::backstreamvy = NAN;
Real P::backstreamvz = NAN;
uint P::xcells_ini = numeric_limits<uint>::max();
uint P::ycells_ini = numeric_limits<uint>::max();
uint P::zcells_ini = numeric_limits<uint>::max();
Real P::t = 0;
Real P::t_min = 0;
Real P::t_max = LARGE_REAL;
Real P::dt = NAN;
Real P::vlasovSolverMaxCFL = NAN;
Real P::vlasovSolverMinCFL = NAN;
Real P::fieldSolverMaxCFL = NAN;
Real P::fieldSolverMinCFL = NAN;
int P::fieldSolverSubcycles = 1;
uint P::tstep = 0;
uint P::tstep_min = 0;
uint P::tstep_max = 0;
uint P::diagnosticInterval = numeric_limits<uint>::max();
bool P::writeInitialState = true;
bool P::meshRepartitioned = true;
bool P::prepareForRebalance = false;
std::vector<CellID> P::localCells;
vector<string> P::systemWriteName;
vector<string> P::systemWritePath;
vector<Real> P::systemWriteTimeInterval;
vector<int> P::systemWriteDistributionWriteStride;
vector<int> P::systemWriteDistributionWriteXlineStride;
vector<int> P::systemWriteDistributionWriteYlineStride;
vector<int> P::systemWriteDistributionWriteZlineStride;
vector<int> P::systemWrites;
Real P::saveRestartWalltimeInterval = -1.0;
uint P::exitAfterRestarts = numeric_limits<uint>::max();
int P::restartStripeFactor = -1;
string P::restartWritePath = string("");
uint P::transmit = 0;
bool P::recalculateStencils = true;
bool P::propagateVlasovAcceleration = true;
bool P::propagateVlasovTranslation = true;
bool P::propagateField = true;
bool P::propagatePotential = false;
bool P::dynamicTimestep = true;
Real P::maxWaveVelocity = 0.0;
int P::maxFieldSolverSubcycles = 0.0;
int P::maxSlAccelerationSubcycles = 0.0;
Real P::resistivity = NAN;
bool P::fieldSolverDiffusiveEterms = true;
uint P::ohmHallTerm = 0;
uint P::ohmGradPeTerm = 0;
Real P::electronTemperature = 0.0;
Real P::sparseMinValue = NAN;
int P::sparseDynamicAlgorithm = 0;
#warning sparseDynamicBulkValue1 needs to be defined per species
Real P::sparseDynamicBulkValue1 = 1;
#warning sparseDynamicBulkValue2 needs to be defined per species
Real P::sparseDynamicBulkValue2 = 1;
#warning sparseDynamicMinValue1 needs to be defined per species
Real P::sparseDynamicMinValue1 = 1;
#warning sparseDynamicMinValue2 needs to be defined per species
Real P::sparseDynamicMinValue2 = 1;
int P::sparseBlockAddWidthV = 1;
bool P::sparse_conserve_mass = false;
string P::restartFileName = string("");
bool P::isRestart=false;
int P::writeAsFloat = false;
string P::loadBalanceAlgorithm = string("");
string P::loadBalanceTolerance = string("");
uint P::rebalanceInterval = numeric_limits<uint>::max();
vector<string> P::outputVariableList;
vector<string> P::diagnosticVariableList;
string P::projectName = string("");
Real P::maxSlAccelerationRotation=10.0;
Real P::hallMinimumRho=1.0;
bool P::bailout_write_restart = false;
Real P::bailout_min_dt = NAN;
uint P::amrMaxVelocityRefLevel = 0;
Realf P::amrRefineLimit = 1.0;
Realf P::amrCoarsenLimit = 0.5;
string P::amrVelRefCriterion = "";
bool Parameters::addParameters(){
//the other default parameters we read through the add/get interface
Readparameters::add("io.diagnostic_write_interval", "Write diagnostic output every arg time steps",numeric_limits<uint>::max());
Readparameters::addComposing("io.system_write_t_interval", "Save the simulation every arg simulated seconds. Negative values disable writes. [Define for all groups.]");
Readparameters::addComposing("io.system_write_file_name", "Save the simulation to this file name series. [Define for all groups.]");
Readparameters::addComposing("io.system_write_path", "Save this series in this location. Default is ./ [Define for all groups or none.]");
Readparameters::addComposing("io.system_write_distribution_stride", "Every this many cells write out their velocity space. 0 is none. [Define for all groups.]");
Readparameters::addComposing("io.system_write_distribution_xline_stride", "Every this many lines of cells along the x direction write out their velocity space. 0 is none. [Define for all groups.]");
Readparameters::addComposing("io.system_write_distribution_yline_stride", "Every this many lines of cells along the y direction write out their velocity space. 0 is none. [Define for all groups.]");
Readparameters::addComposing("io.system_write_distribution_zline_stride", "Every this many lines of cells along the z direction write out their velocity space. 0 is none. [Define for all groups.]");
Readparameters::add("io.write_initial_state","Write initial state, not even the 0.5 dt propagation is done. Do not use for restarting. ",false);
Readparameters::add("io.restart_walltime_interval","Save the complete simulation in given walltime intervals. Negative values disable writes.",-1.0);
Readparameters::add("io.number_of_restarts","Exit the simulation after certain number of walltime-based restarts.",numeric_limits<uint>::max());
Readparameters::add("io.write_restart_stripe_factor","Stripe factor for restart writing.", -1);
Readparameters::add("io.write_as_float","If true, write in floats instead of doubles", false);
Readparameters::add("io.restart_write_path", "Path to the location where restart files should be written. Defaults to the local directory, also if the specified destination is not writeable.", string("./"));
Readparameters::add("propagate_potential","Propagate electrostatic potential during the simulation",false);
Readparameters::add("propagate_field","Propagate magnetic field during the simulation",true);
Readparameters::add("propagate_vlasov_acceleration","Propagate distribution functions during the simulation in velocity space. If false, it is propagated with zero length timesteps.",true);
Readparameters::add("propagate_vlasov_translation","Propagate distribution functions during the simulation in ordinary space. If false, it is propagated with zero length timesteps.",true);
Readparameters::add("dynamic_timestep","If true, timestep is set based on CFL limits (default on)",true);
Readparameters::add("hallMinimumRho", "Minimum rho value used for the Hall and electron pressure gradient terms in the Lorentz force and in the field solver. Default is very low and has no effect in practice.", 1.0);
Readparameters::add("project", "Specify the name of the project to use. Supported to date (20150610): Alfven Diffusion Dispersion Distributions Firehose Flowthrough Fluctuations Harris KHB Larmor Magnetosphere Multipeak PoissonTest Riemann1 Shock Shocktest Template test_fp testHall test_trans VelocityBox verificationLarmor", string(""));
Readparameters::add("restart.filename","Restart from this vlsv file. No restart if empty file.",string(""));
Readparameters::add("gridbuilder.geometry","Simulation geometry XY4D,XZ4D,XY5D,XZ5D,XYZ6D",string("XYZ6D"));
Readparameters::add("gridbuilder.x_min","Minimum value of the x-coordinate.","");
Readparameters::add("gridbuilder.x_max","Minimum value of the x-coordinate.","");
Readparameters::add("gridbuilder.y_min","Minimum value of the y-coordinate.","");
Readparameters::add("gridbuilder.y_max","Minimum value of the y-coordinate.","");
Readparameters::add("gridbuilder.z_min","Minimum value of the z-coordinate.","");
Readparameters::add("gridbuilder.z_max","Minimum value of the z-coordinate.","");
Readparameters::add("gridbuilder.x_length","Number of cells in x-direction in initial grid.","");
Readparameters::add("gridbuilder.y_length","Number of cells in y-direction in initial grid.","");
Readparameters::add("gridbuilder.z_length","Number of cells in z-direction in initial grid.","");
Readparameters::add("gridbuilder.dt","Initial timestep in seconds.",0.0);
Readparameters::add("gridbuilder.t_max","Maximum simulation time, in seconds. If timestep_max limit is hit first this time will never be reached",LARGE_REAL);
Readparameters::add("gridbuilder.timestep_max","Max. value for timesteps. If t_max limit is hit first, this step will never be reached",numeric_limits<uint>::max());
// Field solver parameters
Readparameters::add("fieldsolver.maxWaveVelocity", "Maximum wave velocity allowed in the fastest velocity determination in m/s, default unlimited", LARGE_REAL);
Readparameters::add("fieldsolver.maxSubcycles", "Maximum allowed field solver subcycles", 1);
Readparameters::add("fieldsolver.resistivity", "Resistivity for the eta*J term in Ohm's law.", 0.0);
Readparameters::add("fieldsolver.diffusiveEterms", "Enable diffusive terms in the computation of E",true);
Readparameters::add("fieldsolver.ohmHallTerm", "Enable/choose spatial order of the Hall term in Ohm's law. 0: off, 1: 1st spatial order, 2: 2nd spatial order", 0);
Readparameters::add("fieldsolver.ohmGradPeTerm", "Enable/choose spatial order of the electron pressure gradient term in Ohm's law. 0: off, 1: 1st spatial order.", 0);
Readparameters::add("fieldsolver.electronTemperature", "Constant electron temperature to be used for the electron pressure gradient term (K).", 0.0);
Readparameters::add("fieldsolver.maxCFL","The maximum CFL limit for field propagation. Used to set timestep if dynamic_timestep is true.",0.5);
Readparameters::add("fieldsolver.minCFL","The minimum CFL limit for field propagation. Used to set timestep if dynamic_timestep is true.",0.4);
// Vlasov solver parameters
Readparameters::add("vlasovsolver.maxSlAccelerationRotation","Maximum rotation angle (degrees) allowed by the Semi-Lagrangian solver (Use >25 values with care)",25.0);
Readparameters::add("vlasovsolver.maxSlAccelerationSubcycles","Maximum number of subcycles for acceleration",1);
Readparameters::add("vlasovsolver.maxCFL","The maximum CFL limit for vlasov propagation in ordinary space. Used to set timestep if dynamic_timestep is true.",0.99);
Readparameters::add("vlasovsolver.minCFL","The minimum CFL limit for vlasov propagation in ordinary space. Used to set timestep if dynamic_timestep is true.",0.8);
// Grid sparsity parameters
Readparameters::add("sparse.minValue", "Minimum value of distribution function in any cell of a velocity block for the block to be considered to have contents", 1);
Readparameters::add("sparse.blockAddWidthV", "Number of layers of blocks that are kept in velocity space around the blocks with content",1);
Readparameters::add("sparse.conserve_mass", "If true, then mass is conserved by scaling the dist. func. in the remaining blocks", false);
Readparameters::add("sparse.dynamicAlgorithm", "Type of algorithm used for calculating the dynamic minValue; 0 = none, 1 = linear algorithm based on rho, 2 = linear algorithm based on Blocks, (Example linear algorithm: y = kx+b, where dynamicMinValue1=k*dynamicBulkValue1 + b, and dynamicMinValue2 = k*dynamicBulkValue2 + b", 0);
Readparameters::add("sparse.dynamicMinValue1", "The minimum value for the dynamic minValue", 1);
Readparameters::add("sparse.dynamicMinValue2", "The maximum value (value 2) for the dynamic minValue", 1);
Readparameters::add("sparse.dynamicBulkValue1", "Minimum value for the dynamic algorithm range, so for example if dynamicAlgorithm=1 then for sparse.dynamicBulkValue1 = 1e3, sparse.dynamicBulkValue2=1e5, we apply the algorithm to cells for which 1e3<cell.rho<1e5", 0);
Readparameters::add("sparse.dynamicBulkValue2", "Maximum value for the dynamic algorithm range, so for example if dynamicAlgorithm=1 then for sparse.dynamicBulkValue1 = 1e3, sparse.dynamicBulkValue2=1e5, we apply the algorithm to cells for which 1e3<cell.rho<1e5", 0);
// Load balancing parameters
Readparameters::add("loadBalance.algorithm", "Load balancing algorithm to be used", string("RCB"));
Readparameters::add("loadBalance.tolerance", "Load imbalance tolerance", string("1.05"));
Readparameters::add("loadBalance.rebalanceInterval", "Load rebalance interval (steps)", 10);
// Output variable parameters
Readparameters::addComposing("variables.output", "List of data reduction operators (DROs) to add to the grid file output. Each variable to be added has to be on a new line output = XXX. Available are (20141218) B BackgroundB PerturbedB E Rho RhoBackstream RhoV RhoVBackstream RhoVNonBackstream PressureBackstream PTensorBackstreamDiagonal PTensorNonBackstreamDiagonal PTensorBackstreamOffDiagonal PTensorNonBackstreamOffDiagonal PTensorBackstream PTensorNonBackstream RhoNonBackstream RhoLossAdjust RhoLossVelBoundary LBweight MaxVdt MaxRdt MaxFieldsdt accSubcycles MPIrank BoundaryType BoundaryLayer Blocks fSaved VolE HallE BackgroundBedge VolB BackgroundVolB PerturbedVolB Pressure PTensor derivs BVOLderivs.");
Readparameters::addComposing("variables.diagnostic", "List of data reduction operators (DROs) to add to the diagnostic runtime output. Each variable to be added has to be on a new line diagnostic = XXX. Available (20141218) are FluxB FluxE Blocks Pressure Rho RhoLossAdjust RhoLossVelBoundary LBweight MaxVdt MaxRdt MaxFieldsdt MaxDistributionFunction MinDistributionFunction BoundaryType BoundaryLayer.");
Readparameters::add("variables.dr_backstream_vx", "Center coordinate for the maxwellian distribution. Used for calculating the backstream contriution for rho.", -500000.0);
Readparameters::add("variables.dr_backstream_vy", "Center coordinate for the maxwellian distribution. Used for calculating the backstream contriution for rho.", 0.0);
Readparameters::add("variables.dr_backstream_vz", "Center coordinate for the maxwellian distribution. Used for calculating the backstream contriution for rho.", 0.0);
Readparameters::add("variables.dr_backstream_radius", "Radius of the maxwellian distribution. Used for calculating the backstream contribution for rho", 468621.0);
// bailout parameters
Readparameters::add("bailout.write_restart", "If 1, write a restart file on bailout. Gets reset when sending a STOP (1) or a KILL (0).", true);
Readparameters::add("bailout.min_dt", "Minimum time step below which bailout occurs (s).", 1e-6);
// Refinement parameters
Readparameters::add("AMR.vel_refinement_criterion","Name of the velocity refinement criterion",string(""));
Readparameters::add("AMR.max_velocity_level","Maximum velocity mesh refinement level",(uint)0);
Readparameters::add("AMR.refine_limit","If the refinement criterion function returns a larger value than this, block is refined",(Realf)1.0);
Readparameters::add("AMR.coarsen_limit","If the refinement criterion function returns a smaller value than this, block can be coarsened",(Realf)0.5);
return true;
}
bool Parameters::getParameters(){
//get numerical values of the parameters
Readparameters::get("io.diagnostic_write_interval", P::diagnosticInterval);
Readparameters::get("io.system_write_t_interval", P::systemWriteTimeInterval);
Readparameters::get("io.system_write_file_name", P::systemWriteName);
Readparameters::get("io.system_write_path", P::systemWritePath);
Readparameters::get("io.system_write_distribution_stride", P::systemWriteDistributionWriteStride);
Readparameters::get("io.system_write_distribution_xline_stride", P::systemWriteDistributionWriteXlineStride);
Readparameters::get("io.system_write_distribution_yline_stride", P::systemWriteDistributionWriteYlineStride);
Readparameters::get("io.system_write_distribution_zline_stride", P::systemWriteDistributionWriteZlineStride);
Readparameters::get("io.write_initial_state", P::writeInitialState);
Readparameters::get("io.restart_walltime_interval", P::saveRestartWalltimeInterval);
Readparameters::get("io.number_of_restarts", P::exitAfterRestarts);
Readparameters::get("io.write_restart_stripe_factor", P::restartStripeFactor);
Readparameters::get("io.restart_write_path", P::restartWritePath);
Readparameters::get("io.write_as_float", P::writeAsFloat);
// Checks for validity of io and restart parameters
int myRank;
MPI_Comm_rank(MPI_COMM_WORLD,&myRank);
const string prefix = string("./");
if (access(&(P::restartWritePath[0]), W_OK) != 0) {
if(myRank == MASTER_RANK) {
cerr << "ERROR restart write path " << P::restartWritePath << " not writeable, defaulting to local directory." << endl;
}
P::restartWritePath = prefix;
}
size_t maxSize = 0;
maxSize = max(maxSize, P::systemWriteTimeInterval.size());
maxSize = max(maxSize, P::systemWriteName.size());
maxSize = max(maxSize, P::systemWritePath.size());
maxSize = max(maxSize, P::systemWriteDistributionWriteStride.size());
maxSize = max(maxSize, P::systemWriteDistributionWriteXlineStride.size());
maxSize = max(maxSize, P::systemWriteDistributionWriteYlineStride.size());
maxSize = max(maxSize, P::systemWriteDistributionWriteZlineStride.size());
if ( P::systemWriteTimeInterval.size() != maxSize) {
if(myRank == MASTER_RANK) {
cerr << "ERROR io.system_write_t_interval should be defined for all file types." << endl;
}
return false;
}
if ( P::systemWriteName.size() != maxSize) {
if(myRank == MASTER_RANK) {
cerr << "ERROR io.system_write_file_name should be defined for all file types." << endl;
}
return false;
}
if ( P::systemWritePath.size() != maxSize && P::systemWritePath.size() != 0) {
if(myRank == MASTER_RANK) {
cerr << "ERROR io.system_write_path should be defined for all file types or none at all." << endl;
}
return false;
}
if ( P::systemWriteDistributionWriteStride.size() != maxSize) {
if(myRank == MASTER_RANK) {
cerr << "ERROR io.system_write_distribution_stride should be defined for all file types." << endl;
}
return false;
}
if ( P::systemWriteDistributionWriteXlineStride.size() != maxSize) {
if(myRank == MASTER_RANK) {
cerr << "ERROR io.system_write_distribution_xline_stride should be defined for all file types." << endl;
}
return false;
}
if ( P::systemWriteDistributionWriteYlineStride.size() != maxSize) {
if(myRank == MASTER_RANK) {
cerr << "ERROR io.system_write_distribution_yline_stride should be defined for all file types." << endl;
}
return false;
}
if ( P::systemWriteDistributionWriteZlineStride.size() != maxSize) {
if(myRank == MASTER_RANK) {
cerr << "ERROR io.system_write_distribution_zline_stride should be defined for all file types." << endl;
}
return false;
}
if ( P::systemWritePath.size() == 0 ) {
for (uint i = 0; i < P::systemWriteName.size(); i++) {
P::systemWritePath.push_back(string("./"));
}
} else {
for (uint i = 0; i < P::systemWritePath.size(); i++) {
if (access(&(P::systemWritePath.at(i)[0]), W_OK) != 0) {
if(myRank == MASTER_RANK) {
cerr << "ERROR " << P::systemWriteName.at(i) << " write path " << P::systemWritePath.at(i) << " not writeable, defaulting to local directory." << endl;
}
P::systemWritePath.at(i) = prefix;
}
}
}
Readparameters::get("propagate_field",P::propagateField);
Readparameters::get("propagate_potential",P::propagatePotential);
Readparameters::get("propagate_vlasov_acceleration",P::propagateVlasovAcceleration);
Readparameters::get("propagate_vlasov_translation",P::propagateVlasovTranslation);
Readparameters::get("dynamic_timestep",P::dynamicTimestep);
Readparameters::get("hallMinimumRho",P::hallMinimumRho);
Readparameters::get("restart.filename",P::restartFileName);
P::isRestart=(P::restartFileName!=string(""));
Readparameters::get("project", P::projectName);
/*get numerical values, let Readparameters handle the conversions*/
string geometryString;
Readparameters::get("gridbuilder.geometry",geometryString);
Readparameters::get("gridbuilder.x_min",P::xmin);
Readparameters::get("gridbuilder.x_max",P::xmax);
Readparameters::get("gridbuilder.y_min",P::ymin);
Readparameters::get("gridbuilder.y_max",P::ymax);
Readparameters::get("gridbuilder.z_min",P::zmin);
Readparameters::get("gridbuilder.z_max",P::zmax);
Readparameters::get("gridbuilder.x_length",P::xcells_ini);
Readparameters::get("gridbuilder.y_length",P::ycells_ini);
Readparameters::get("gridbuilder.z_length",P::zcells_ini);
Readparameters::get("AMR.max_velocity_level",P::amrMaxVelocityRefLevel);
Readparameters::get("AMR.vel_refinement_criterion",P::amrVelRefCriterion);
Readparameters::get("AMR.refine_limit",P::amrRefineLimit);
Readparameters::get("AMR.coarsen_limit",P::amrCoarsenLimit);
if (geometryString == "XY4D") P::geometry = geometry::XY4D;
else if (geometryString == "XZ4D") P::geometry = geometry::XZ4D;
else if (geometryString == "XY5D") P::geometry = geometry::XY5D;
else if (geometryString == "XZ5D") P::geometry = geometry::XZ5D;
else if (geometryString == "XYZ6D") P::geometry = geometry::XYZ6D;
else {
cerr << "Unknown simulation geometry in " << __FILE__ << ":" << __LINE__ << endl;
return false;
}
if (P::amrCoarsenLimit >= P::amrRefineLimit) return false;
if (P::xmax < P::xmin || (P::ymax < P::ymin || P::zmax < P::zmin)) return false;
// Set some parameter values.
P::dx_ini = (P::xmax-P::xmin)/P::xcells_ini;
P::dy_ini = (P::ymax-P::ymin)/P::ycells_ini;
P::dz_ini = (P::zmax-P::zmin)/P::zcells_ini;
Readparameters::get("gridbuilder.dt",P::dt);
Readparameters::get("gridbuilder.t_max",P::t_max);
Readparameters::get("gridbuilder.timestep_max",P::tstep_max);
if(P::dynamicTimestep)
P::dt=0.0; //if dynamic timestep then first dt is always 0
//if we are restarting, t,t_min, tstep, tstep_min will be overwritten in readGrid
P::t_min=0;
P::t = P::t_min;
P::tstep_min=0;
P::tstep = P::tstep_min;
// Get field solver parameters
Readparameters::get("fieldsolver.maxWaveVelocity", P::maxWaveVelocity);
Readparameters::get("fieldsolver.maxSubcycles", P::maxFieldSolverSubcycles);
Readparameters::get("fieldsolver.resistivity", P::resistivity);
Readparameters::get("fieldsolver.diffusiveEterms", P::fieldSolverDiffusiveEterms);
Readparameters::get("fieldsolver.ohmHallTerm", P::ohmHallTerm);
Readparameters::get("fieldsolver.ohmGradPeTerm", P::ohmGradPeTerm);
Readparameters::get("fieldsolver.electronTemperature", P::electronTemperature);
Readparameters::get("fieldsolver.maxCFL",P::fieldSolverMaxCFL);
Readparameters::get("fieldsolver.minCFL",P::fieldSolverMinCFL);
// Get Vlasov solver parameters
Readparameters::get("vlasovsolver.maxSlAccelerationRotation",P::maxSlAccelerationRotation);
Readparameters::get("vlasovsolver.maxSlAccelerationSubcycles",P::maxSlAccelerationSubcycles);
Readparameters::get("vlasovsolver.maxCFL",P::vlasovSolverMaxCFL);
Readparameters::get("vlasovsolver.minCFL",P::vlasovSolverMinCFL);
// Get sparsity parameters
Readparameters::get("sparse.minValue", P::sparseMinValue);
Readparameters::get("sparse.blockAddWidthV", P::sparseBlockAddWidthV);
Readparameters::get("sparse.conserve_mass", P::sparse_conserve_mass);
Readparameters::get("sparse.dynamicAlgorithm", P::sparseDynamicAlgorithm);
Readparameters::get("sparse.dynamicBulkValue1", P::sparseDynamicBulkValue1);
Readparameters::get("sparse.dynamicBulkValue2", P::sparseDynamicBulkValue2);
Readparameters::get("sparse.dynamicMinValue1", P::sparseDynamicMinValue1);
Readparameters::get("sparse.dynamicMinValue2", P::sparseDynamicMinValue2);
// Get load balance parameters
Readparameters::get("loadBalance.algorithm", P::loadBalanceAlgorithm);
Readparameters::get("loadBalance.tolerance", P::loadBalanceTolerance);
Readparameters::get("loadBalance.rebalanceInterval", P::rebalanceInterval);
// Get output variable parameters
Readparameters::get("variables.output", P::outputVariableList);
Readparameters::get("variables.diagnostic", P::diagnosticVariableList);
// Filter duplicate variable names
set<string> dummy(P::outputVariableList.begin(),P::outputVariableList.end());
P::outputVariableList.clear();
P::outputVariableList.insert(P::outputVariableList.end(),dummy.begin(),dummy.end());
dummy.clear();
dummy.insert(P::diagnosticVariableList.begin(),P::diagnosticVariableList.end());
P::diagnosticVariableList.clear();
P::diagnosticVariableList.insert(P::diagnosticVariableList.end(),dummy.begin(),dummy.end());
//Get parameters related to calculating backstream contributions
Readparameters::get("variables.dr_backstream_radius", P::backstreamradius);
Readparameters::get("variables.dr_backstream_vx", P::backstreamvx);
Readparameters::get("variables.dr_backstream_vy", P::backstreamvy);
Readparameters::get("variables.dr_backstream_vz", P::backstreamvz);
// Get parameters related to bailout
Readparameters::get("bailout.write_restart", P::bailout_write_restart);
Readparameters::get("bailout.min_dt", P::bailout_min_dt);
for (size_t s=0; s<P::systemWriteName.size(); ++s) P::systemWrites.push_back(0);
return true;
}