All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.
0.6.1 - 2023-06-13
- Support for PyTorch 1.13.x to 2.0.x
- GitHub Actions badge
0.6.0 - 2023-06-12
- Support for Python 3.10 and 3.11
- Updated dependencies
0.5.1 - 2022-08-03
- Adopt updated
sktime
version
0.5.0 - 2022-08-01
- "zero" value imputation
- Download progress bars
- One-hot encoded PhysioNet2012
ICUType
channel - Updated pre-commit hooks
overwrite_cache
now re-downloads datascikit-learn
dependency
0.4.2 - 2022-07-06
torchtime.data.PhysioNet2019Binary
data set, a binary prediction variant of the PhysioNet 2019 challenge- SHA256 checksums to verify integrity of cached data
standardise
argument to standarise dataoverwrite_cache
argument to update a cached data set- Impute a subset of channels using forward imputation with
select
argument - Progress bars for PhysioNet data set processing
- Additional argument validation
- Additional unit tests
- Code copy button in documentation
- Code refactor
- Removed
torchtime.data.TensorTimeSeriesDataset
class - Removed
downscale
argument override
argument renamedchannel_means
- Download UEA/UCR data directly (not via
sktime
) overwrite_cache
argument to update cached data- Updated console messages
- Rename cache directories
test
directory renamedtests
- Using MacOS runner for GitHub Actions
- Updated tutorials with automated code testing
- Updated documentation
- Continuous deployment
Release pulled
Release pulled
0.3.0 - 2022-04-25
torchtime.data.PhysioNet2012
data set- PhysioNet and UEA/UCR unit tests
- Utility function module
- Better console messages
- More efficient PhysioNet data set downscaling
- Updated documentation
- Replace PhysioNet 2019 missing data indicator with
NaN
- Code coverage badge
0.2.0 - 2022-04-08
impute
argument to support missing data imputation using mean and forward imputation methods or a custom imputation functiondownscale
argument to reduce the size of data sets for testing/model developmenttorchtime.data.TensorTimeSeriesDataset
class to create a data set from input tensors
- Processed data are now cached in the
.torchtime
directory train_split
andval_split
arguments are renamedtrain_prop
andval_prop
respectively- Introduced generic
torchtime.data_TimeSeriesDataSet
class behind the scenes - note training/validation/test data splits have changed for a given seed torchtime.collate.packed_sequence
now returns bothX
andy
as a PackedSequence object- Expanded unit tests - note coverage is currently limited as PhysioNet2019 tests cannot be run under CI
- Updated documentation
- Use
float32
/torch.float
andint64
/torch.long
precision for all data sets - Shape of
y
data in PhysioNet2019 data - Bug when adding time delta channels without a missing data mask
0.1.1 - 2022-03-31
- Missing data simulation for UEA/UCR data sets
- Support appending missing data masks and time delta channels
torchtime.collate.packed_sequence
collate function- Documentation now includes a tutorial
- Automated releases using GitHub Actions
- DOI
- Simplified training/validation/test split approach
- Default file path for PhysioNet2019 data set is now
data/physionet2019
- Refactored
torchtime.data
to share utility functions across data classes - Expanded unit tests
- Updated documentation
0.1.0 - 2022-03-28
First release to PyPi