Phidata Assistants add memory, knowledge and tools to LLMs. Let's test out a few examples.
- Create a virtual environment
python3 -m venv ~/.venvs/aienv
source ~/.venvs/aienv/bin/activate
- Install libraries
pip install -U phidata openai
- Basic Assistant
python cookbook/assistants/basic.py
- Data Analyst Assistant
pip install -U duckdb
python cookbook/assistants/data_analyst.py
- Web Search Assistant
pip install -U duckduckgo-search
python cookbook/assistants/web_search.py
- Python Assistant
python cookbook/assistants/python_assistant.py
Install docker desktop first.
- Run using a helper script
./cookbook/run_pgvector.sh
- OR run using the docker run command
docker run -d \
-e POSTGRES_DB=ai \
-e POSTGRES_USER=ai \
-e POSTGRES_PASSWORD=ai \
-e PGDATA=/var/lib/postgresql/data/pgdata \
-v pgvolume:/var/lib/postgresql/data \
-p 5532:5432 \
--name pgvector \
phidata/pgvector:16
- Install libraries
pip install -U sqlalchemy pgvector "psycopg[binary]" pypdf
- RAG Assistant
python cookbook/assistants/rag_assistant.py
- Autonomous Assistant
python cookbook/assistants/auto_assistant.py
- PDF Assistant
python cookbook/assistants/pdf_assistant.py