|
| 1 | +from __future__ import absolute_import |
| 2 | +from __future__ import division |
| 3 | +from __future__ import print_function |
| 4 | + |
| 5 | +import numpy as np |
| 6 | +import pandas as pd |
| 7 | +import xarray as xr |
| 8 | + |
| 9 | +from . import randn, randint, requires_dask |
| 10 | + |
| 11 | + |
| 12 | +nx = 3000 |
| 13 | +ny = 2000 |
| 14 | +nt = 1000 |
| 15 | + |
| 16 | +basic_indexes = { |
| 17 | + '1slice': {'x': slice(0, 3)}, |
| 18 | + '1slice-1scalar': {'x': 0, 'y': slice(None, None, 3)}, |
| 19 | + '2slicess-1scalar': {'x': slice(3, -3, 3), 'y': 1, 't': slice(None, -3, 3)} |
| 20 | +} |
| 21 | + |
| 22 | +basic_assignment_values = { |
| 23 | + '1slice': xr.DataArray(randn((3, ny), frac_nan=0.1), dims=['x', 'y']), |
| 24 | + '1slice-1scalar': xr.DataArray(randn(int(ny / 3) + 1, frac_nan=0.1), |
| 25 | + dims=['y']), |
| 26 | + '2slicess-1scalar': xr.DataArray(randn(int((nx - 6) / 3), frac_nan=0.1), |
| 27 | + dims=['x']) |
| 28 | +} |
| 29 | + |
| 30 | +outer_indexes = { |
| 31 | + '1d': {'x': randint(0, nx, 400)}, |
| 32 | + '2d': {'x': randint(0, nx, 500), 'y': randint(0, ny, 400)}, |
| 33 | + '2d-1scalar': {'x': randint(0, nx, 100), 'y': 1, 't': randint(0, nt, 400)} |
| 34 | +} |
| 35 | + |
| 36 | +outer_assignment_values = { |
| 37 | + '1d': xr.DataArray(randn((400, ny), frac_nan=0.1), dims=['x', 'y']), |
| 38 | + '2d': xr.DataArray(randn((500, 400), frac_nan=0.1), dims=['x', 'y']), |
| 39 | + '2d-1scalar': xr.DataArray(randn(100, frac_nan=0.1), dims=['x']) |
| 40 | +} |
| 41 | + |
| 42 | +vectorized_indexes = { |
| 43 | + '1-1d': {'x': xr.DataArray(randint(0, nx, 400), dims='a')}, |
| 44 | + '2-1d': {'x': xr.DataArray(randint(0, nx, 400), dims='a'), |
| 45 | + 'y': xr.DataArray(randint(0, ny, 400), dims='a')}, |
| 46 | + '3-2d': {'x': xr.DataArray(randint(0, nx, 400).reshape(4, 100), |
| 47 | + dims=['a', 'b']), |
| 48 | + 'y': xr.DataArray(randint(0, ny, 400).reshape(4, 100), |
| 49 | + dims=['a', 'b']), |
| 50 | + 't': xr.DataArray(randint(0, nt, 400).reshape(4, 100), |
| 51 | + dims=['a', 'b'])}, |
| 52 | +} |
| 53 | + |
| 54 | +vectorized_assignment_values = { |
| 55 | + '1-1d': xr.DataArray(randn((400, 2000)), dims=['a', 'y'], |
| 56 | + coords={'a': randn(400)}), |
| 57 | + '2-1d': xr.DataArray(randn(400), dims=['a', ], coords={'a': randn(400)}), |
| 58 | + '3-2d': xr.DataArray(randn((4, 100)), dims=['a', 'b'], |
| 59 | + coords={'a': randn(4), 'b': randn(100)}) |
| 60 | +} |
| 61 | + |
| 62 | + |
| 63 | +class Base(object): |
| 64 | + def setup(self, key): |
| 65 | + self.ds = xr.Dataset( |
| 66 | + {'var1': (('x', 'y'), randn((nx, ny), frac_nan=0.1)), |
| 67 | + 'var2': (('x', 't'), randn((nx, nt))), |
| 68 | + 'var3': (('t', ), randn(nt))}, |
| 69 | + coords={'x': np.arange(nx), |
| 70 | + 'y': np.linspace(0, 1, ny), |
| 71 | + 't': pd.date_range('1970-01-01', periods=nt, freq='D'), |
| 72 | + 'x_coords': ('x', np.linspace(1.1, 2.1, nx))}) |
| 73 | + |
| 74 | + |
| 75 | +class Indexing(Base): |
| 76 | + def time_indexing_basic(self, key): |
| 77 | + self.ds.isel(**basic_indexes[key]).load() |
| 78 | + |
| 79 | + time_indexing_basic.param_names = ['key'] |
| 80 | + time_indexing_basic.params = [list(basic_indexes.keys())] |
| 81 | + |
| 82 | + def time_indexing_outer(self, key): |
| 83 | + self.ds.isel(**outer_indexes[key]).load() |
| 84 | + |
| 85 | + time_indexing_outer.param_names = ['key'] |
| 86 | + time_indexing_outer.params = [list(outer_indexes.keys())] |
| 87 | + |
| 88 | + def time_indexing_vectorized(self, key): |
| 89 | + self.ds.isel(**vectorized_indexes[key]).load() |
| 90 | + |
| 91 | + time_indexing_vectorized.param_names = ['key'] |
| 92 | + time_indexing_vectorized.params = [list(vectorized_indexes.keys())] |
| 93 | + |
| 94 | + |
| 95 | +class Assignment(Base): |
| 96 | + def time_assignment_basic(self, key): |
| 97 | + ind = basic_indexes[key] |
| 98 | + val = basic_assignment_values[key] |
| 99 | + self.ds['var1'][ind.get('x', slice(None)), |
| 100 | + ind.get('y', slice(None))] = val |
| 101 | + |
| 102 | + time_assignment_basic.param_names = ['key'] |
| 103 | + time_assignment_basic.params = [list(basic_indexes.keys())] |
| 104 | + |
| 105 | + def time_assignment_outer(self, key): |
| 106 | + ind = outer_indexes[key] |
| 107 | + val = outer_assignment_values[key] |
| 108 | + self.ds['var1'][ind.get('x', slice(None)), |
| 109 | + ind.get('y', slice(None))] = val |
| 110 | + |
| 111 | + time_assignment_outer.param_names = ['key'] |
| 112 | + time_assignment_outer.params = [list(outer_indexes.keys())] |
| 113 | + |
| 114 | + def time_assignment_vectorized(self, key): |
| 115 | + ind = vectorized_indexes[key] |
| 116 | + val = vectorized_assignment_values[key] |
| 117 | + self.ds['var1'][ind.get('x', slice(None)), |
| 118 | + ind.get('y', slice(None))] = val |
| 119 | + |
| 120 | + time_assignment_vectorized.param_names = ['key'] |
| 121 | + time_assignment_vectorized.params = [list(vectorized_indexes.keys())] |
| 122 | + |
| 123 | + |
| 124 | +class IndexingDask(Indexing): |
| 125 | + def setup(self, key): |
| 126 | + requires_dask() |
| 127 | + super(IndexingDask, self).setup(key) |
| 128 | + self.ds = self.ds.chunk({'x': 100, 'y': 50, 't': 50}) |
0 commit comments