Skip to content

Latest commit

 

History

History
382 lines (284 loc) · 26.2 KB

DOCUMENTATION.md

File metadata and controls

382 lines (284 loc) · 26.2 KB

Protein-Ligand Interaction Profiler (PLIP)

What is PLIP?

The Protein-Ligand Interaction Profiler (PLIP) is a tool to analyze and visualize protein-ligand interactions in PDB files.

Why should I use PLIP?

Comprehensive Detection of Interactions

  • Eight types of noncovalent interactions
  • Interaction between proteins and
    • small molecules
    • ions
    • polymers
    • DNA / RNA
  • Rich additional information on binding, e.g. unpaired functional groups

Everything Is Automated

  • Direct download of PDB structures from PDB server
  • Automatic detection and grouping of relevant ligands in a PDB file
  • No need for special preparation of a PDB file, works out of the box
  • Automatic fixing of errors in PDB files

Flexible Usage

  • Processing of custom PDB files containing protein-ligand complexes (e.g. from docking)
  • Atom-level interaction reports in TXT and XML formats for easy parsing
  • Generation of PyMOL session files (.pse), enabling easy preparation of images for publications and talks
  • Rendering of 3D interaction diagram for each ligand and its interactions with the protein

Installing PLIP From Source

1. Install Dependencies

The following instructions should work on any Linux machine. If you are using Windows or MacOS, the process may differ. Please refer to the webpages of the corresponding tools to get help for installation.

Current dependencies are listed in the README.md.

2. Download PLIP

To clone from version control, open a new system terminal and execute

$ git clone https://github.com/pharmai/plip.git

This will clone into the folder plip in your current working directory.

3. Simplify access to PLIP

Use the following command to make the PLIP command line accessible in your bash via the command alias plip. Pay attention to change the absolute path to the location where you cloned PLIP in the previous step.

$ alias plip='python <absolute path>/plip/plipcmd.py'

Analyze a PDB structure with PLIP

Single Structures

Having PLIP installed, you can run

$ plip -h

to list all available command line options. We will go through all important settings in this section. A typical application of PLIP involves the analysis of protein-ligand interactions in a structure from the Protein Data Bank (PDB). PLIP can automatically fetch the entry from the PDB server when a valid PDB ID is provided.

plip -i 1vsn -v

The command above will fetch the PDB entry 1vsn from the server, analyze all interactions and print out the results (verbose mode). No output files are produced at this point, except a protonated version of the input structure.

The same can be done for local PDB files (-f <file>) or for reading from stdin (-f -).

$ wget http://files.rcsb.org/download/1EVE.pdb
$ plip -f 1EVE.pdb -v

The output formats can be added in any combination, currently including:

  • XML report files (-x, best for automatic processing)
  • Text report files (-t, human-readable)
  • PyMOL session files (-y)
  • PyMOL Ray-traced images (-p)
  • writing to stdout (-O), to be used in combination with XML or text report files
$ plip -i 1osn -pyx

The command above will fetch the PDB entry 1osn, analyze all interactions and produce one XML result file (-x) as well as rendered images (-p) and PyMOL session files (-y) for each binding site.

Batch Mode

PLIP can process multiple structures at once, either from PDB or local files. To activate batch mode, just provide a list of PDB IDs or local file names, e.g.:

$ plip -i 1vsn 1osn 2reg -vx

PLIP will create subdirectories for each given structure in the output folder. If in PDB ID mode (-i), the folder structure will be nested and based on the two middle characters of the PDB ID. The structure 1vsn in batch processing will have its output files in <outputfolder>/vs/1vsn.

Detection of Protein-Peptide Interactions

For the detection of ligands, PLIP relies on the separation of ATOM and HETATM entries in the PDB file. The latter are searched for suitable ligands when running in normal mode. Peptide ligands, however, are usually deposited as ATOM entries in a separate chain. PLIP can not detect these entities automatically. To switch into protein-peptide interaction mode, start PLIP with the option --peptides, followed by the peptide chain of interest, e.g.:

$ plip -i 5hi4 --peptides I -vx

This option can also be used to analyze interaction between different protein chains or nucleic acid strands and is therefore also available using the synonym --inter.

Detection of Intra-Chain Interactions

Intra-protein interactions are important for the stabilization of a structure and can give valuable insights for protein engineering and drug discovery. PLIP supports detection of interactions within one chain. o switch into intra-chain interaction mode, start PLIP with the option --intra, followed by the protein chain of interest, e.g.:

$ plip -i 5b2m --intra A -yv

Please note that detection within a chain takes much longer than detection of protein-ligand interactions, especially for large structures.

Interactions of Molecules with DNA/RNA

PLIP can characterize interactions between ligands and DNA/RNA. A special mode allows to switch from treating DNA/RNA molecules as ligands to treating them as part of the receptor in the structure. If a protein is present, too, interactions of the ligand with both, protein and nucleic acids, will be shown. To use this mode, start PLIP with the option --dnareceptor.

Changing detection thresholds

The PLIP algorithm uses a rule-based detection to report non-covalent interaction between proteins and their partners. The current settings are based on literature values and have been refined based on extensive testing with independent cases from mainly crystallography journals, covering a broad range of structure resolutions. For most users, it is not recommended to change the standard settings. However, there may be cases where changing detection thresholds is advisable (e.g. sets with multiple very low resolution structures).

PLIP allows you to change the setting permanently or for one run.

Permanent change

PLIP settings are stored in the file modules/config.py, which is loaded in each run. One section in the file includes assignments of standard values to all distance and angle thresholds, together with short descriptions. Changing the values in this file means they will be changed permanently for PLIP. Furthermore, filter settings for ligands (metal ions in complexes, unsupported ligands, warnings for possible artifacts) can be changed in this file as well.

Temporary change

Thresholds can be changed for each run using command-line parameters. The naming of the variables is identical to those in the config file, but all lowercase. Specify the threshold you want to change and the new value, e.g. to change HYDROPH_DIST_MAX to 5 Angstrom, run PLIP using

$ plip -i 1vsn --hydroph_dist_max 5

All distance thresholds can be increased to up to 10 Angstrom. Thresholds for angles can be set between 0 and 180 degree. If two interdependent thresholds have conflicting values, PLIP will show an error message.

Further Options

PLIP offers further command line options which enables you to switch advanced settings, e.g.

  • Set number n of maximum threads used for parallel processing (--maxthreads <n>)
  • Do not automatically combine covalently bound ligands (--breakcomposite)
  • Do not discard alternate locations (--altlocation)
  • Turn off automatic fixing of errors in PDB files (--nofix)
  • Keep modified residues as ligands (--keepmod)
  • Do not protonate structures with non-deterministic OpenBabel routines (--nohydro)
  • Select a specific model from an ensemble structure (--model)

Web Service

A web service for analysis of protein-ligand complexes using PLIP is available at plip.biotec.tu-dresden.de

The web site offers advanced functions to search for specific entries from PDB and lists the interaction results in the browser. Additionally, the service used the BioLiP database to annotate biologically relevant ligands. The option to change threshold, ligand filtering, and batch processing is only available in the command line tool and with the Python modules.

Algorithm

PLIP uses a rule-based system for detection of non-covalent interactions between protein residues and ligands. Information on chemical groups able to participate in a specific interaction (e.g. requirements for hydrogen bond donors) and interaction geometry (e.g. distance and angle thresholds) from literature are used to detect characteristics of non-covalent interactions between contacting atoms of protein and ligands. For each binding site, the algorithm searches first for atoms or atom groups in the protein and ligand which could possibly be partner in specific interactions. In the second step, geometric rules are applied to match groups in protein and ligand forming an interaction.

Detection and filtering of ligands

Previous to the detection step for the interactions, PLIP extracts all ligands contained in the structure. Modified amino acids are identified and excluded using MODRES entries of the PDB files. Additionally, it uses the BioLiP list of possible artifacts to remove ligands which are in this list and appear 15 times or more in a structure. Just a few compounds are currently excluded, being listed in the PLIP config file.

Preparation of structures

Polar hydrogens are added to the structure and alternative conformations/models/positions removed. Missing chains are assigned to ligands and non-standard ligand names (with special characters) altered to LIG.

Detection of possible interacting groups

Binding site atoms

The binding site distance cutoff is determined by adding up BS_DIST_MAX to the maximum extent to the ligand (maximum distance of a ligand atom to ligand centroid). All protein atoms within this distance cutoff to any binding site atoms are counted as belonging to the binding site.

Hydrophobic Atoms

An atom is classified as hydrophobic if it is a carbon and has only carbon or hydrogen atoms as neighbors.

Aromatic Rings

OpenBabel is used to identify rings (SSSR perception) and their aromaticity. In cases where no aromaticity is reported by OpenBabel, the ring is checked for planarity. To this end, the normals of each atom in the ring to its neighbors is calculated. The angle between each pair of normals has to be less than AROMATIC_PLANARITY. If this holds true, the ring is also considered as aromatic.

Hydrogen Bond Donors and Acceptors

OpenBabel is used to identify hydrogen bond donor and acceptor atoms. Halogen atoms are excluded from this group and treated separately (see below).

Charged Groups

The detection of charged groups is only exhaustive for the binding site, not the ligands. For proteins, positive charges are attributed to the side chain nitrogens of Arginine, Histidine and Lysine. Negative charged are assigned to the carboxyl groups in Aspartic Acid and Glutamic Acid. In ligands, positive charges are assigned to quaterny ammonium groups, tertiary amines (assuming the nitrogen could pick up a hydrogen and thus get charged), sulfonium and guanidine groups. Negative charges are reported for phosphate, sulfonate, sulfonic acid and carboxylate.

Halogen Bonds Donors and Acceptors

Assuming that halogen atoms are not present in proteins (unless they are artificially modified), halogen bond donors are searched for only in ligands. All fluorine, chlorine, bromide or iodine atoms connected to a carbon atom qualify as donors. Halogen bond acceptors in proteins are all carbon, phosphor or sulphur atoms connected to oxygen, phosphor, nitrogen or sulfur.

Water

Water atoms are assigned to a ligand-binding site complex if their oxygen atoms are within a certain cutoff to the ligand. The cutoff is determined by adding up BS_DIST_MAX to the maximum extent to the ligand (maximum distance of a ligand atom to ligand centroid). This means the farthest distance of a ligand to a water atom is BS_DIST_MAX.

Detection of Interactions

For an overview on geometric cutoffs used for the prediction of interactions, please refer to the config file. Note that the threshold can not be changed for jobs running on PLIP Web. The command line tool (sourcecode available for download), however, allows changing all listed parameters permanently or for single runs.

Hydrophobic Interactions

As hydrophobic interactions result from entropic changes rather than attractive forces between atoms, there are no clear geometries of hydrophobic association. The observed attraction between hydrophobic atoms decays exponentially with the distance between them.

A generous cutoff was chosen, identifying a prime set of hydrophobic interactions between all pairs of hydrophobic atoms within a distance of HYDROPH_DIST_MAX. Since the number of hydrophobic interactions with such an one-step approach can easily surpass all other interaction types combined, it may strongly influence subsequent evaluation or applications as interaction fingerprinting. To overcome this problem, the number of hydrophobic interactions is reduced in several steps. First, hydrophobic interactions between rings interacting via π-stacking are removed. This is done because stacking already involves hydrophobic interactions.

Second, two clustering steps are applied. If a ligand atom interacts with several binding site atoms in the same residue, only the interaction with the closest distance is kept. Subsequently, the set of hydrophobic interactions is checked from the opposite perspective: if a protein atom interacts with several neighboring ligand atoms, just the interaction with the closest distance is kept. Together, these reduction steps help to report only the most representative hydrophobic interactions.

Hydrogen Bonds

A hydrogen bond between a hydrogen bond donor and acceptor is reported if several geometric requirements are fulfilled. The distance has to be less than HBOND_DIST_MAX and the angle at the donor group (D-H...A) above HBOND_DON_ANGLE_MIN.

Since salt bridges involve purely electrostatic interactions as well as hydrogen bonds, it is not meaningful to report both interaction types between the same groups. Thus, hydrogen bonds between atoms are removed if they belong to groups that already form a salt bridge to that atom.

As a general rule, a hydrogen bond donor can take part in only one hydrogen bond, while acceptor atoms can be partners in multiple hydrogen bonds (e.g. bifurcated hydrogen bonds). For multiple possible hydrogen bonds from one donor, only the contact with the donor angle closer to 180 ° is kept.

π-Stacking

π-Stacking for two aromatic rings is reported whenever their centers are within a distance of PISTACK_DIST_MAX, the angle deviates no more than PISTACK_ANG_DEV from the optimal angle of 90 ° for T-stacking or 180 ° for P-stacking.

Additionally, each ring center is projected onto the opposite ring plane. The distance between the other ring center and the projected point (i.e. the offset) has to be less than PISTACK_OFFSET_MAX. This value corresponds approximately to the radius of benzene + 0.6 Angstroem.

π-Cation Interactions

π-Cation interactions are reported for each pairing of a positive charge and an aromatic ring if the distance between the charge center and the aromatic ring center is less than PICATION_DIST_MAX and the offset between the ring center and the charge is no larger than PISTACK_OFFSET_MAX. In the case of a putative π-cation interaction with a tertiary amine of the ligand, an additional angle criterion is applied (see documentation in the source code).

Salt Bridges

Whenever two centers of opposite charges come within a distance of SALTBRIDGE_DIST_MAX, a salt bridge is reported. In contrast to hydrogen bonds, there are no additional geometric restrictions.

Water bridges

While residues can be bridged by more than one water molecule, for the prediction in this script the only case considered is one water molecule bridging ligand and protein atoms via hydrogen bonding.

The water molecule has to be positioned between hydrogen bond donor/acceptor pairs of ligand and protein with distances of the water oxygen within WATER_BRIDGE_MINDIST and WATER_BRIDGE_MAXDIST to the corresponding polar atoms of the donor or acceptor groups. If a constellation with a water atom fulfils these requirements, two angles are checked. The angle ω between the acceptor atom, the water oxygen and donor hydrogen has to be within WATER_BRIDGE_OMEGA_MIN and WATER_BRIDGE_OMEGA_MAX.Additionally, the angle θ between the water oxygen, the donor hydrogen and the donor atom has to be larger than WATER_BRIDGE_THETA_MIN.

Similar to standard hydrogen bonds, a water molecule is only allowed to participate as donor in two hydrogen bonds (two hydrogen atoms as donors). In the case of more than two possible hydrogen bonds for a water molecule as donor, only the two contacts with a water angle closest to 110° are kept

Halogen Bonds

Halogen bonds are reported for each pairing of halogen bond acceptor and donor group having a distance of less than HALOGEN_DIST_MAX and angles at the donor and acceptor group of HALOGEN_DON_ANGLE and HALOGEN_ACC_ANGLE with a deviation of no more than HALOGEN_ANG_DEV.

Metal Complexes

For metal complexes, PLIP considers metal ions from a set of more than 50 species (see PLIP config for more details). Possible interacting groups in the protein are sidechains of cystein (S), histidine (N), asparagine, glutamic acid, serin, threonin, and tyrosin (all O), as well as all main chain oxygens.

In ligands, following groups are considered for metal complexation: alcohols, phenolates, carboxylates, phosphoryls, thiolates, imidazoles, pyrroles, and the iron-sulfur cluster as a special constellation. For one metal ions, all groups with a maximum distance of METAL_DIST_MAX to the ligand are considered for the complex.

After assigning all target groups to one metal ions, the resulting set of angles of the complex is compared with known sets of angles from common coordination geometries (linear [2], trigonal planar [3], trigonal pyramidal [3], tetrahedral [4], square planar [4], trigonal bipyramidal [5], square pyramidal [5], and octahedral [6]). The best fit with the least difference in observed targets is chosen as an estimated geometry and targets superfluous to the constellation are removed.

Additional Information

Legend for PyMOL visualization

Structural Elements

Description RGB PyMOL color Representation
Protein [43, 131, 186] myblue (custom) sticks
Ligand [253, 174, 97] myorange (custom) sticks
Water [191, 191, 255] lightblue nb_spheres
Charge Center [255, 255, 0] yellow spheres
Aromatic Ring Center [230, 230, 230] grey90 spheres
Ions [250, 255, 128] hotpink spheres

Interactions

Description RGB PyMOL color Representation
Hydrophobic Interaction [128, 128, 128] grey50 dashed
Hydrogen Bond [0, 0, 255] blue solid line
Water Bridges [191, 191, 255] lightblue solid line
pi-Stacking (parallel) [0, 255, 0] green dashed line
pi-Stacking (perpendicular) [140, 179, 102] smudge dashed line
pi-Cation Interaction [255, 128, 0] orange dashed line
Halogen Bond [54, 255, 191] greencyan solid line
Salt Bridge [255, 255, 0] yellow dashed line
Metal Complex [140, 64, 153] violetpurple dashed line

XML Report Documentation

Attribute Description
report Contains all binding site information

report

Attribute Description
plipversion Version of PLIP used for generating the output file
bindingsite Information for one bindingsite. Has a unique ID and attribute has_interactions
date_of_creation Date of the analyis
citation_information How to cite PLIP
mode Documents if PLIP was started in default or any special mode (e.g. intra-protein interactions)
pdbid PDB identifier of the input file
model Number of the model in the PDB file on which analysis was done
pdbfile Name of the input PDB file
pdbfixes Were any fixes applied automatically to the input file?
filename Filename of the processed PDB file
excluded_ligands List of excluded ligands

bindingsite

Attribute Description
identifiers Ligand/bindingsite identifiers
lig_properties Additional information on the ligand, i.e. number of functional atoms
interacting chains Lists the chains the ligand interacts with
bs_residues Listing of binding site residues the ligand is near to or interacts with.
interactions Detailed information on all interactions
mappings Contains mappings from canonical SMILES to PDB in smiles_to_pdb

identifiers

Attribute Description
longname Long name of ligand, contains all het ids of ligands in one composite cluster
ligtype Classification of ligand, can be SMALLMOLECULE/POLYMER/DNA/RNA/ION or combinations of the first four with ION
hetid PDB hetero ID of the ligand
chain Chain assigned to the ligand in the PDB file
position Position in chain of the ligand in the PDB file
composite Can be True or False depending on whether the ligand consists of several separate subunits or not
members Lists the members of a composite ligand cluster
smiles The SMILES string of the complete (composite) ligand

lig_properties

Attribute Description
num_heavy_atoms Number of heavy atoms in the ligand
num_hbd Number of hydrogen bond donors in the ligand
num_unpaired_hbd Number of unpaired hydrogen bond donors in the ligand
num_hba Number of hydrogen bond acceptors in the ligand
num_unpaired_hba Number of unpaired hydrogen bond acceptors in the ligand
num_hal Number of halogen bond donors in the ligand
num_unpaired_hal Number of unpaired halogen bond donors in the ligand
num_aromatic_rings Number of aromatic rings in the ligand
num_rotatable_bonds Number of rotatable bonds in the ligand
molweight Molecular weight of the ligand
logp logP value of the ligand

bs_residues

Contains a list of bs_residue entries selected with a primary distance cutoff. As IDs, ech bs_residue lists aa (three-letter amino acid code), contact (boolean, indicated if residue interactions with the ligand or not), id (a continuous ID), min_dist (The minimal distance to the ligand).

Attribute Description
bs_residue Concatenated chain of position and residue number

interactions

Interactions are subdivided by interaction type. Most interaction types share the same information (types and IDs of interacting residue, distances), while some information is specific to certain types (charges, directionality, ring geometries, etc.)

Type Attribute Description
All resnr Residue number of interacting amino acid
All restype Residue type of interacting amino acid
All reschain Residue chain of interacting amino acid
All resnr_lig Residue number of interacting ligand residue
All restype_lig Residue type of interacting ligand residue
All reschain_lig Residue chain of interacting ligand residue
All dist Distance of interacting atoms or groups in Angstrom
All (except metal_complex) ligcoo Coordinates of interacting ligand atom or interaction center in ligand
All (except metal_complex) protcoo Coordinates of interacting protein atom or interaction center in ligand
hydrogen_bond sidechain Is the H-Bond formed with the sidechain of the protein?
hydrogen_bond dist_h-a Distance between H-Bond hydrogen and acceptor atom
hydrogen_bond dist_d-a Distance between H-Bond donor and acceptor atoms
hydrogen_bond, water_bridge, halogen_bond don_angle Angle at the donor
hydrogen_bond, water_bridge protisdon Is protein the donor?
hydrogen_bond, water_bridge, halogen_bond donoridx/don_idx Atom ID of the donor atom
hydrogen_bond, water_bridge, halogen_bond donortype Atom type of the donor atom
hydrogen_bond, water_bridge, halogen_bond acceptoridx/acc_idx Atom ID of the acceptor atom
hydrogen_bond, water_bridge, halogen_bond acceptortype Atom type of the acceptor atom
water_bridge dist_a-w Distance between the acceptor and interacting atom from water
water_bridge dist_d-w Distance between the donor and water interacting atom from water
water_bridge water_angle Angle at the interacting water atoms
water_bridge water_idx Atom ID of the water oxygen atom
halogen_bond acc_angle Angle at the aceptor
salt_bridge protispos Does the protein carry the positive charge?
salt_bridge, pi_cation_interaction lig_group Functional group in the ligand
salt_bridge, pi_stack lig_idx_list List of atom IDs from the functional group in the ligand
pi_stack cent_dist Distance between the ring centers
pi_stack angle Angle between the ring planes
pi_stack, pi_cation_interaction offset Offset between the interacting groups
pi_stack type Stacking type (Perpendicular or T-Shaped)
pi_cation_interaction protcharged Does the protein provide the charge?
metal_complex metalcoo Coordinates of interacting metal atom
metal_complex targetcoo Coordinates of interacting protein atom or interaction center in the chelating target group (in protein or ligand)
metal_complex metal_idx Atom ID of the metal ion
metal_complex metal_type Atom type of the metal
metal_complex target_idx Atom ID of the target interacting atom
metal_complex target_type Atom type of the target interacting atom
metal_complex coordination Metal coordination number
metal_complex location Location of the target group
metal_complex rms RMS of the geometry fit
metal_complex geometry Metal coordination type
metal_complex complexnum Continous numbering for the metal complex