Skip to content

pfoy/ASL-Recognition-with-Deep-Learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 

Repository files navigation

ASL-Recognition-with-Deep-Learning

Build a convolutional neural network to classify images of letters from American Sign Language

American Sign Language (ASL) is the primary language used by many deaf individuals in North America, and it is also used by hard-of-hearing and hearing individuals. The language is as rich as spoken languages and employs signs made with the hand, along with facial gestures and bodily postures.

A lot of recent progress has been made towards developing computer vision systems that translate sign language to spoken language. This technology often relies on complex neural network architectures that can detect subtle patterns in streaming video. However, as a first step, towards understanding how to build a translation system, we can reduce the size of the problem by translating individual letters, instead of sentences.

In this notebook, we will train a convolutional neural network to classify images of American Sign Language (ASL) letters. After loading, examining, and preprocessing the data, we will train the network and test its performance.

Project Source: DataCamp

About

Build a convolutional neural network to classify images of letters from American Sign Language

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published