-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathdata-snooping-example.R
179 lines (149 loc) · 4.28 KB
/
data-snooping-example.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
library(quantmod)
library(PerformanceAnalytics)
library(kernlab)
###
# This script is about data-snooping, and why it can sometimes be useful
# http://petewerner.blogspot.com/2013/10/the-case-for-data-snooping.html
###
###
# collate some summary statistics
###
retsummary <- function(x, scale=252)
{
up <- x[x > 0]
dn <- x[x < 0]
mup <- mean(up)
mdn <- mean(dn)
acc <- length(up) / length(x)
stddev <- sd.annualized(x)[1]
annret <- Return.annualized(as.vector(x), scale)
maxdd <- maxDrawdown(x)
c(acc=acc, sd=stddev, annret=annret, maxdd=maxdd, avgup=mup, avgdn=mdn)
}
#turn a list of retsummary's into a table of sorts
lst2tbl <- function(deets) matrix(unlist(deets), nr=length(deets), byrow=T, dimnames = list(names(deets), names(deets[[1]])))
#rolling model stuff, described here http://petewerner.blogspot.com.au/2013/09/building-models-over-rolling-time.html
data_prep <- function(data, lookback=5, uselog=FALSE, snoop=FALSE)
{
if (uselog)
data <- ROC(Cl(data))
else
data <- Cl(data)
if (snoop)
tmp <- cbind(data, data, Lag(data, 1:(lookback-1)))
else
tmp <- cbind(data, Lag(data, 1:lookback))
colnames(tmp) <- c("Y", paste("X", 1:(ncol(tmp) - 1), sep=''))
return(tmp)
}
## make training set
# get prev 4 weeks of data by default
train_test_split <- function(data, train=4, test=1, period="weeks")
{
ep <- endpoints(data, on=period)
if (length(ep) < (train+test+1))
stop(sprintf("wanted %d %s, only got %d", train + test, period, length(ep)-1))
train_end <- ep[train + 1]
trainset <- data[1:train_end,]
test_start <- train_end + 1
test_end <- ep[train + test + 1]
testset <- data[test_start:test_end,]
return(list(train=trainset, test=testset))
}
run_model <- function(data, trainsz=4, testsz=1, period='weeks')
{
tt <- train_test_split(data, trainsz, testsz, period)
trainset <- tt[["train"]]
testset <- tt[["test"]]
testX <- testset[,-1]
testY <- testset[,1]
mod <- ksvm(Y~., trainset)
pr <- predict(mod, testX)
mat <- cbind(pr, testY)
colnames(mat) <- c("pred", "actual")
return(mat)
}
roll_model <- function(data, trainsz=4, testsz=1, period='weeks', verbose=FALSE)
{
totsz <- trainsz + testsz
ep <- endpoints(data, period)
endlen <- length(ep) - totsz
mr <- c()
for (i in 1:endlen) {
startidx <- ep[i] + 1
endidx <- ep[i + totsz]
if (verbose && i %% 10 == 0)
cat(sprintf("%.2f %d %d %d\n", i/endlen, i, startidx, endidx))
datasub <- data[startidx:endidx,]
sink("/dev/null")
#make sure the sink gets turned off if there is an error
mod <- tryCatch(run_model(datasub, trainsz, testsz, period), finally=sink())
mr <- rbind(mr, mod)
}
return(mr)
}
##end rolling model stuff
###
# turn our price prediction into log returns
# predicted price is in col 1, actual price in col 2.
# put put the previous close in col 3 and go from there
###
res2rets <- function(res, clvec)
{
prev <- Lag(clvec)
tmp <- cbind(res, prev[index(res)])
t(apply(tmp, 1, function(x) c(log(x[1]/x[3]), log(x[2]/x[3]) )))
}
###
# make the actual returns realised.
# the indicator/signal is the sign (ie direction) of our prediction in col 1
# the actual returns are in col 2
###
retvec <- function(rets)
{
ind <- sign(rets[,1])
rval <- rets[,2] * ind
return(rval)
}
getSymbols("^GSPC", from='2000-01-01')
spx <- GSPC
smavals <- SMA(Cl(spx), 200)
sigsma <- ifelse(Cl(spx) > smavals, 1, -1)
cl <- ROC(Cl(spx))
cl <- na.omit(cl)
#200 day sma
maret <- cl * Lag(sigsma)
maret <- na.omit(maret)
#same but with 1 day lookahead
maretsn <- cl * sigsma
maretsn <- na.omit(maretsn)
####
# svm using prices
####
#set up our testing data
sndata <- data_prep(spx, snoop=T)
#train/test the models, gives prediction and actual value
snres <- roll_model(sndata)
#convert predicted/actual to returns for analysis
snrets <- res2rets(snres, Cl(spx))
#make the actual return series generated
snrv <- retvec(snrets)
data <- data_prep(spx, snoop=F)
res <- roll_model(data)
rets <- res2rets(res, Cl(spx))
rv <- retvec(rets)
#####
# using log returns
#####
sndatar <- data_prep(spx, uselog=T, snoop=T)
snresr <- roll_model(sndatar)
snrvr <- retvec(snresr)
datar <- data_prep(spx, uselog=T, snoop=F)
resr <- roll_model(datar)
rvr <- retvec(resr)
####
# generate summary table
####
info <- list(sma.sn=maretsn, sma=maret, spx.cl.sn=snrv, spx.cl=rv, spx.r.sn=snrvr, spx.r=rvr)
tbl <- lst2tbl(lapply(info, retsummary))
tbl