-
Notifications
You must be signed in to change notification settings - Fork 35
About hotbit
Pekka Koskinen edited this page Dec 15, 2015
·
10 revisions
Hotbit aims to provide
- an open-source DFTB code
- a companion for DFT,
- for easy & fast electronic structure analysis
- to access to dynamical properties
- to investigate systems of same size
- for testing, playing around
- a compact and accessible code for everyone to inspect and modify
- trying to avoid parallelization, which implies that the code is less suitable for large systems
- an intuitive user interface
- ideal for learning and teaching realistic electronic structure simulations
- If you use hotbit in your published work, please cite: P. Koskinen and V. Mäkinen Density-functional tight-binding for beginners Computational Materials Science 47, 237 (2009)
- Written 'Hotbit' or 'hotbit', not HOTBIT
@article{koskinen_CMS_09,
Author = {P. Koskinen, V. Mäkinen},
Journal = {Computational Material Science},
Title = {Density-functional tight-binding for beginners},
Volume = {47},
Pages = {237},
Year = {2009}
}
- G. Seifert et.al Eine approximative Variante des LCAO-Xalpha-Verfahrens, Z. Phys. Chemie 267, 529 (1989)
- Foulkes and Haydock, Tight-binding models and density-functional theory, Phys. Rev. B, 39 12520 (1989)
- D. Porezag et.al Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon Phys. Rev. B 51, 12947 (1995)
- M. Elstner et.al, Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties Phys. Rev. B. 58, 7260 (1998)
- T. A. Niehaus et.al Entwicklung approximativer Methoden in der zeitabhängigen Dichtefunktionaltheorie, PhD thesis, Universität Paderborn (2001)
- T. A. Niehaus et.al Tight-binding approach to time-dependent density-functional response theory Phys. Rev. B 63 (2001)
- T. N. Todorov, Time-dependent tight-binding J. Phys.: Condens. Matter 13, 10125 (2001)
- T. A. Niehaus et.al, Importance of electronic self-consistency in the TDDFT base treatment of nonadiabatic molecular dynamics Eur. Phys. J. D, 35 467 (2005)
- S. Malola, H. Häkkinen, P. Koskinen Gold in graphene: in-plane adsorption and diffusion Appl. Phys. Lett. 94, 043106 (2009)
- P. Koskinen, S. Malola, H. Häkkinen Self-passivating edge reconstructions of graphene Phys. Rev. Lett. 101, 115502 (2008)
- S. Malola, H. Häkkinen, P. Koskinen Raman spectra of single-walled carbon nanotubes with vacancies Phys. Rev. B 77, 155412 (2008)
- P. Koskinen and V. Mäkinen Density-functional Tight-binding for beginners Computational Materials Science 47, 237 (2009)
- S. Malola, H. Häkkinen, P. Koskinen Comparison of Raman spectra and vibrational density of states between graphene nanoribbons Eur. Phys. J. D 52, 71 (2009)
- P. Rakyta, A. Kormanyos, J. Cserti, P. Koskinen Exploring the graphene edges with coherent electron focusing Phys. Rev. B 81, 115411 (2010)
- X. Lin, N. Nilius, M. Sterrer, P. Koskinen, H. Häkkinen, H.-J. Freund Characterizing the periphery atoms of Au islands on MgO thin films Phys. Rev. B
- S. Malola, H. Häkkinen, P. Koskinen Structural, chemical and dynamical trends in graphene grain boundaries Phys. Rev. B 81, 165447 (2010)
- P. Koskinen, O. O. Kit Efficient approach for simulating distorted materials Phys. Rev. Lett. 105, 106401 (2010)
- P. Koskinen Electronic and optical properties in carbon nanotubes under pure bending Phys. Rev. B 81, 193409 (2010)
- P. Koskinen, O. O. Kit Approximate modeling of spherical membranes Phys. Rev. B 81, 235420 (2010)
- O. O. Kit, L. Pastewka, P. Koskinen Revised Periodic Boundary Conditions: Fundamentals, electrostatics and the tight-binding approximation Phys. Rev. B 84, 155431 (2011)
- P. Koskinen Electromechanics of Twisted graphene nanoribbons Appl. Phys. Lett. 99, 013105 (2011)
- O. O. Kit, T. Tallinen, L. Mahadevan, J. Timonen, P. Koskinen Twisting graphene nanoribbons into carbon nanotubes Phys. Rev. B 85, 085428 (2012)
- A. Ramasubramaniam. P. Koskinen, O. O. Kit and V. B. Shenoy Edge-stress -induced spontaneous twisting of graphene nanoribbons J. Appl. Phys 111, 054302 (2012)
- P. Koskinen Graphene nanoribbons subject to gentle bends Phys. Rev. B 85, 205429 (2012)
- V. Mäkinen, P. Koskinen and H. Häkkinen Modeling thiolate-protected gold clusters with density-functional tight-binding Eur. Phys. J. D 67, 38 (2012)
- T. Korhonen and P. Koskinen Electronic structure trends if Möbius Graphene nanoribbons from minimal-cell simulations 81, 264 (2012)
- C. Stiehler, Y. Pan, W.-D. Schneider, P. Koskinen, H. Häkkinen, N. Nilius, H.-J. Freund Electron quantization in arbitrarily shaped Au islands on MgO thin films Phys. Rev. B, *88, 115415 (2013)
- P. Koskinen, I. Fampiou, A. Ramasubramaniam Density-functional tight-binding simulations of curvature-controlled valley polarization and band-gap tuning in bilayer MoS2 Phys. Rev. Lett. 112, 186802 (2014)
- MSc thesis of Johannes Nokelainen [attachment:Johannes_Nokelainen.pdf (pdf file)]
- T. Korhonen, P. Koskinen Electromechanics of graphene spirals AIP Advances 2, 127125 (2015)
- P. Koskinen, T. Korhonen Plenty of motion at the bottom: Atomically thin liquid gold membrane Nanoscale 7, 10140 (2015)
- The predecessor of the code is Fortran-based tight-binding code, originally initiated by Michael Moseler (Fraunhofer IWM, Freiburg).
- The present code was written in Fraunhofer IWM (University of Jyväskylä, Finland) by Pekka Koskinen and friends.
- Code under version control on-line 5.9 2008
- Source opened under GPL 1.4.2009
- Code moved from University of Jyväskylä's trac system to github in December 2015
- Developers (alphabetical order): Pekka Koskinen (University of Jyväskylä, Finland), Ville Mäkinen (University of Jyväskylä, Finland), Lars Pastewka (Fraunhofer IWM, Germany)