Skip to content

A lightweight 2D Pose model can be deployed on Linux/Window/Android, supports CPU/GPU inference acceleration, and can be detected in real time on ordinary mobile phones.

Notifications You must be signed in to change notification settings

pdkyll/Human-Pose-Estimation-Lite-cpp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Human-Pose-Estimation-Lite-cpp

这是轻量化版本的人体姿态估计(2D Pose)C++推理代码,推理框架使用TNN

  • 轻量化模型是基于MobileNet V2的改进版本
  • 使用COCO的数据集进行训练,也可以支持MPII数据
  • 支持OpenCL模型推理加速,在普通手机可实时检测
  • 该仓库并未集成人体检测模型,Pose检测输入是原图,使用人体检测框并进行裁剪,Pose检测效果会更好
  • 关于轻量化版本的人体检测检测模型,可参考Object-Detection-Lite-cpp
  • 纯C++版本速度比较慢,需要配置OpenCL方可实时检测
  • Python Demo 模型训练代码暂时未提供
  • Android Demo 已经集成了轻量化版本的人体检测模型人体姿态估计模型,在普通手机可实时检测
  • 博客《2D Pose人体关键点检测(Python/Android /C++ Demo)
Android Demo CPU:70ms,GPU:50ms
Android Demo

1.目录结构

.
├── 3rdparty
├── data
├── docs
├── src
├── build.sh
├── CMakeLists.txt
├── README.md
└── result.jpg

2.配置说明

(1)依赖库

(2)配置说明

  • 配置OpenCV(推荐opencv-4.3.0)
mkdir build
cd build
cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..
sudo make install
  • 配置OpenCL加速(可选)

Android系统一般都支持OpenCL,Linux系统可参考如下配置:

# 参考安装OpenCL: https://blog.csdn.net/qq_28483731/article/details/68235383,作为测试,安装`intel cpu版本的OpenCL`即可
# 安装clinfo,clinfo是一个显示OpenCL平台和设备的软件
sudo apt-get install clinfo
# 安装依赖
sudo apt install dkms xz-utils openssl libnuma1 libpciaccess0 bc curl libssl-dev lsb-core libicu-dev
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys 3FA7E0328081BFF6A14DA29AA6A19B38D3D831EF
echo "deb http://download.mono-project.com/repo/debian wheezy main" | sudo tee /etc/apt/sources.list.d/mono-xamarin.list
sudo apt-get update
sudo apt-get install mono-complete
# 在intel官网上下载了intel SDK的tgz文件,并且解压
sudo sh install.sh

3.模型参数说明

  • 模型需要配置的参数如下:
struct ModelParam {
    float aspect_ratio;                //长宽比,一般为0.75
    float scale_ratio;                 //缩放比例,一般为1.25
    int input_width;                   //模型输入宽度,单位:像素
    int input_height;                  //模型输入高度,单位:像素
    bool use_udp;                      //是否使用无偏估计UDP,一般为false
    bool use_rgb;                      //是否使用RGB作为模型输入
    vector<float> bias;                //输入数据偏置:bias=-m/std
    vector<float> scale;               //输入数据归一化尺度:scale=1/std/255
    vector<vector<float>> skeleton;    //关键点连接序号ID(用于可视化显示)
};

4.Demo

  • bash build.sh

5.COCO关键点说明

  • 关键点连接线序号(用于绘制图像)
skeleton =[[15, 13], [13, 11], [16, 14], [14, 12], [11, 12], [5, 11], [6, 12], [5, 6], [5, 7], [6, 8], [7, 9], [8, 10], [0, 1], [0, 2], [1, 3], [2, 4]]
  • 图像左右翻转时,成对的关键点(训练时用于数据增强)
flip_pairs=[[1, 2], [3, 4], [5, 6], [7, 8],[9, 10], [11, 12], [13, 14], [15, 16]]
  • 每个关键点序号对应人体关键点的意义
"keypoints": {
 0: "nose",
 1: "left_eye",
 2: "right_eye",
 3: "left_ear",
 4: "right_ear",
 5: "left_shoulder",
 6: "right_shoulder",
 7: "left_elbow",
 8: "right_elbow",
 9: "left_wrist",
 10: "right_wrist",
 11: "left_hip",
 12: "right_hip",
 13: "left_knee",
 14: "right_knee",
 15: "left_ankle",
 16: "right_ankle"
}

6.联系

  • pan_jinquan@163.com
  • 麻烦给个Star
  • 如果你觉得该帖子帮到你,还望贵人多多支持,鄙人会再接再厉,继续努力的~

About

A lightweight 2D Pose model can be deployed on Linux/Window/Android, supports CPU/GPU inference acceleration, and can be detected in real time on ordinary mobile phones.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published