forked from ServiceNow/HighRes-net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
308 lines (242 loc) · 11.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
""" Python script to train HRNet + shiftNet for multi frame super resolution (MFSR) """
import json
import os
import datetime
import numpy as np
from sklearn.model_selection import train_test_split
from tqdm import tqdm
import torch
import torch.optim as optim
import argparse
from torch import nn
from torch.utils.data import DataLoader
from torch.optim import lr_scheduler
from DeepNetworks.HRNet import HRNet
from DeepNetworks.ShiftNet import ShiftNet
from DataLoader import ImagesetDataset
from Evaluator import shift_cPSNR
from utils import getImageSetDirectories, readBaselineCPSNR, collateFunction
from tensorboardX import SummaryWriter
def register_batch(shiftNet, lrs, reference):
"""
Registers images against references.
Args:
shiftNet: torch.model
lrs: tensor (batch size, views, W, H), images to shift
reference: tensor (batch size, W, H), reference images to shift
Returns:
thetas: tensor (batch size, views, 2)
"""
n_views = lrs.size(1)
thetas = []
for i in range(n_views):
theta = shiftNet(torch.cat([reference, lrs[:, i : i + 1]], 1))
thetas.append(theta)
thetas = torch.stack(thetas, 1)
return thetas
def apply_shifts(shiftNet, images, thetas, device):
"""
Applies sub-pixel translations to images with Lanczos interpolation.
Args:
shiftNet: torch.model
images: tensor (batch size, views, W, H), images to shift
thetas: tensor (batch size, views, 2), translation params
Returns:
new_images: tensor (batch size, views, W, H), warped images
"""
batch_size, n_views, height, width = images.shape
images = images.view(-1, 1, height, width)
thetas = thetas.view(-1, 2)
new_images = shiftNet.transform(thetas, images, device=device)
return new_images.view(-1, n_views, images.size(2), images.size(3))
def get_loss(srs, hrs, hr_maps, metric='cMSE'):
"""
Computes ESA loss for each instance in a batch.
Args:
srs: tensor (B, W, H), super resolved images
hrs: tensor (B, W, H), high-res images
hr_maps: tensor (B, W, H), high-res status maps
Returns:
loss: tensor (B), metric for each super resolved image.
"""
# ESA Loss: https://kelvins.esa.int/proba-v-super-resolution/scoring/
criterion = nn.MSELoss(reduction='none')
if metric == 'masked_MSE':
loss = criterion(hr_maps * srs, hr_maps * hrs)
return torch.mean(loss, dim=(1, 2))
nclear = torch.sum(hr_maps, dim=(1, 2)) # Number of clear pixels in target image
bright = torch.sum(hr_maps * (hrs - srs), dim=(1, 2)).clone().detach() / nclear # Correct for brightness
loss = torch.sum(hr_maps * criterion(srs + bright.view(-1, 1, 1), hrs), dim=(1, 2)) / nclear # cMSE(A,B) for each point
if metric == 'cMSE':
return loss
return -10 * torch.log10(loss) # cPSNR
def get_crop_mask(patch_size, crop_size):
"""
Computes a mask to crop borders.
Args:
patch_size: int, size of patches
crop_size: int, size to crop (border)
Returns:
torch_mask: tensor (1, 1, 3*patch_size, 3*patch_size), mask
"""
mask = np.ones((1, 1, 3 * patch_size, 3 * patch_size)) # crop_mask for loss (B, C, W, H)
mask[0, 0, :crop_size, :] = 0
mask[0, 0, -crop_size:, :] = 0
mask[0, 0, :, :crop_size] = 0
mask[0, 0, :, -crop_size:] = 0
torch_mask = torch.from_numpy(mask).type(torch.FloatTensor)
return torch_mask
def trainAndGetBestModel(fusion_model, regis_model, optimizer, dataloaders, baseline_cpsnrs, config):
"""
Trains HRNet and ShiftNet for Multi-Frame Super Resolution (MFSR), and saves best model.
Args:
fusion_model: torch.model, HRNet
regis_model: torch.model, ShiftNet
optimizer: torch.optim, optimizer to minimize loss
dataloaders: dict, wraps train and validation dataloaders
baseline_cpsnrs: dict, ESA baseline scores
config: dict, configuration file
"""
np.random.seed(123) # seed all RNGs for reproducibility
torch.manual_seed(123)
num_epochs = config["training"]["num_epochs"]
batch_size = config["training"]["batch_size"]
n_views = config["training"]["n_views"]
min_L = config["training"]["min_L"] # minimum number of views
beta = config["training"]["beta"]
subfolder_pattern = 'batch_{}_views_{}_min_{}_beta_{}_time_{}'.format(
batch_size, n_views, min_L, beta, f"{datetime.datetime.now():%Y-%m-%d-%H-%M-%S-%f}")
checkpoint_dir_run = os.path.join(config["paths"]["checkpoint_dir"], subfolder_pattern)
os.makedirs(checkpoint_dir_run, exist_ok=True)
tb_logging_dir = config['paths']['tb_log_file_dir']
logging_dir = os.path.join(tb_logging_dir, subfolder_pattern)
os.makedirs(logging_dir, exist_ok=True)
writer = SummaryWriter(logging_dir)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
best_score = 100
P = config["training"]["patch_size"]
offset = (3 * config["training"]["patch_size"] - 128) // 2
C = config["training"]["crop"]
torch_mask = get_crop_mask(patch_size=P, crop_size=C)
torch_mask = torch_mask.to(device) # crop borders (loss)
fusion_model.to(device)
regis_model.to(device)
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=config['training']['lr_decay'],
verbose=True, patience=config['training']['lr_step'])
for epoch in tqdm(range(1, num_epochs + 1)):
# Train
fusion_model.train()
regis_model.train()
train_loss = 0.0 # monitor train loss
# Iterate over data.
for lrs, alphas, hrs, hr_maps, names in tqdm(dataloaders['train']):
optimizer.zero_grad() # zero the parameter gradients
lrs = lrs.float().to(device)
alphas = alphas.float().to(device)
hr_maps = hr_maps.float().to(device)
hrs = hrs.float().to(device)
# torch.autograd.set_detect_anomaly(mode=True)
srs = fusion_model(lrs, alphas) # fuse multi frames (B, 1, 3*W, 3*H)
# Register batch wrt HR
shifts = register_batch(regis_model,
srs[:, :, offset:(offset + 128), offset:(offset + 128)],
reference=hrs[:, offset:(offset + 128), offset:(offset + 128)].view(-1, 1, 128, 128))
srs_shifted = apply_shifts(regis_model, srs, shifts, device)[:, 0]
# Training loss
cropped_mask = torch_mask[0] * hr_maps # Compute current mask (Batch size, W, H)
# srs_shifted = torch.clamp(srs_shifted, min=0.0, max=1.0) # correct over/under-shoots
loss = -get_loss(srs_shifted, hrs, cropped_mask, metric='cPSNR')
loss = torch.mean(loss)
loss += config["training"]["lambda"] * torch.mean(shifts)**2
# Backprop
loss.backward()
optimizer.step()
epoch_loss = loss.detach().cpu().numpy() * len(hrs) / len(dataloaders['train'].dataset)
train_loss += epoch_loss
# Eval
fusion_model.eval()
val_score = 0.0 # monitor val score
for lrs, alphas, hrs, hr_maps, names in dataloaders['val']:
lrs = lrs.float().to(device)
alphas = alphas.float().to(device)
hrs = hrs.numpy()
hr_maps = hr_maps.numpy()
srs = fusion_model(lrs, alphas)[:, 0] # fuse multi frames (B, 1, 3*W, 3*H)
# compute ESA score
srs = srs.detach().cpu().numpy()
for i in range(srs.shape[0]): # batch size
if baseline_cpsnrs is None:
val_score -= shift_cPSNR(np.clip(srs[i], 0, 1), hrs[i], hr_maps[i])
else:
ESA = baseline_cpsnrs[names[i]]
val_score += ESA / shift_cPSNR(np.clip(srs[i], 0, 1), hrs[i], hr_maps[i])
val_score /= len(dataloaders['val'].dataset)
if best_score > val_score:
torch.save(fusion_model.state_dict(),
os.path.join(checkpoint_dir_run, 'HRNet.pth'))
torch.save(regis_model.state_dict(),
os.path.join(checkpoint_dir_run, 'ShiftNet.pth'))
best_score = val_score
writer.add_image('SR Image', (srs[0] - np.min(srs[0])) / np.max(srs[0]), epoch, dataformats='HW')
error_map = hrs[0] - srs[0]
writer.add_image('Error Map', error_map, epoch, dataformats='HW')
writer.add_scalar("train/loss", train_loss, epoch)
writer.add_scalar("train/val_loss", val_score, epoch)
scheduler.step(val_score)
writer.close()
def main(config):
"""
Given a configuration, trains HRNet and ShiftNet for Multi-Frame Super Resolution (MFSR), and saves best model.
Args:
config: dict, configuration file
"""
# Reproducibility options
np.random.seed(0) # RNG seeds
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Initialize the network based on the network configuration
fusion_model = HRNet(config["network"])
regis_model = ShiftNet()
optimizer = optim.Adam(list(fusion_model.parameters()) + list(regis_model.parameters()), lr=config["training"]["lr"]) # optim
# ESA dataset
data_directory = config["paths"]["prefix"]
baseline_cpsnrs = None
if os.path.exists(os.path.join(data_directory, "norm.csv")):
baseline_cpsnrs = readBaselineCPSNR(os.path.join(data_directory, "norm.csv"))
train_set_directories = getImageSetDirectories(os.path.join(data_directory, "train"))
val_proportion = config['training']['val_proportion']
train_list, val_list = train_test_split(train_set_directories,
test_size=val_proportion,
random_state=1, shuffle=True)
# Dataloaders
batch_size = config["training"]["batch_size"]
n_workers = config["training"]["n_workers"]
n_views = config["training"]["n_views"]
min_L = config["training"]["min_L"] # minimum number of views
beta = config["training"]["beta"]
train_dataset = ImagesetDataset(imset_dir=train_list, config=config["training"],
top_k=n_views, beta=beta)
train_dataloader = DataLoader(train_dataset, batch_size=batch_size,
shuffle=True, num_workers=n_workers,
collate_fn=collateFunction(min_L=min_L),
pin_memory=True)
config["training"]["create_patches"] = False
val_dataset = ImagesetDataset(imset_dir=val_list, config=config["training"],
top_k=n_views, beta=beta)
val_dataloader = DataLoader(val_dataset, batch_size=1,
shuffle=False, num_workers=n_workers,
collate_fn=collateFunction(min_L=min_L),
pin_memory=True)
dataloaders = {'train': train_dataloader, 'val': val_dataloader}
# Train model
torch.cuda.empty_cache()
trainAndGetBestModel(fusion_model, regis_model, optimizer, dataloaders, baseline_cpsnrs, config)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--config", help="path of the config file", default='config/config.json')
args = parser.parse_args()
assert os.path.isfile(args.config)
with open(args.config, "r") as read_file:
config = json.load(read_file)
main(config)