Skip to content
/ motive Public

A proof-of-concept library for motif analysis using MDL techniques.

License

Notifications You must be signed in to change notification settings

pbloem/motive

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

59 Commits
 
 
 
 
 
 
 
 

Repository files navigation

motive

A proof-of-concept library for motif analysis using MDL techniques. It contains the methods described in the paper Compression as a Fast Measure of Network Motif Relevance.

Installation and use

Each release on github comes with a compiled JAR file which you can run as a command-line program. Download the latest one here. See the section examples below, for how to use it.

Calling the code

The command line provides some basic results, but to do real experiments, you will probably want to call the code directlyfrom your own program. The simplest way is to include it as a Maven dependency through jitpack. Just include the following repository in your pom.xml file:

    <repositories>
        <repository>
            <id>jitpack.io</id>
            <url>https://jitpack.io</url>
        </repository>
    </repositories>

and the following dependency:

	<dependency>
	    <groupId>com.github.pbloem</groupId>
	    <artifactId>motive</artifactId>
	    <version>v0.1.XXX</version> <!-- check http://jitpack.io/#pbloem/motive for the latest version -->
	</dependency>

Check the jitpack link above for linking from gradle/sbt/leiningen projects, and to see what the latest release is.

Have a look at the classes Compare and CompareLarge for hints on how to set up a motif experiment from within java code. For command line usage, see the next section.

Usage examples

Display usage information:

java -jar motive.jar --help 

Run the "synthetic" experiment: create random graphs with injected motifs.

java -jar motive.jar --type synth --synth.repeats 3 --synth.n 50 --synth.m 600 --synth.instances 0,5,10

Run the "fast" experiment (ER model and EdgeList model) on a particular dataset, finding motifs of size up to (and including) 10:

java -jar motive.jar --type fast --file data.txt --minsize 3 --maxsize 10 --samples 1000000 --maxmotifs 30 

The "full" experiment includes the precise DS model as well. This is a bit slower.

java -jar motive.jar --type full --file data.txt --minsize 3 --maxsize 5 --samples 100000 --maxmotifs 30

Data format

The default data format is a text file with a list of edges: each line should contain two nonnegative integers, separated by whitespace: indicating an edge between the two nodes indicated by the given indices. Any lines starting with '#' are ignored.

The indices are assumed to be consecutive, i.e. starting at zero, with no nonnegative integers unused. If your indices start at 100000, the parsed graph will also have (orphaned) nodes for all integers from 0 to 100000.

All files from the KONECT repository should work out of the box.

The GML format is also supported with the switch --filetype gml. This is not well tested, so your mileage may vary.

Plotting

The plots in the paper were produced using python scripts. Motive will copy these into the output directory and attempt to run them. This will fail if the correct dependencies are not installed. Here's a short recipe for getting the scripts to run:

  • Install Anaconda (the python 3 version)
  • run the command ```conda install matplotlib'''
  • Go to the output directory and run ```python plot.synthetic.py''' (or whichever python file was copied to the output directory).

If this doesn't work, make a ticket on github describing what went wrong, and we'll try to help you out.

Miscellaneous notes

  • The Nauty implementation, used for graph canonization is a re-implementation. It is not complete, and the real Nauty is likely much faster. If many samples of large motifs (eg. 12 nodes) are necessary, this will become the bottleneck. Up to 10 nodes, however, you should be able to take around a 25k 10-node samples per minute, even on commodity hardware.
  • If you get a memory error, increase your heap space by adding -Xmx3g before -jar. This sets the heap space to 3 gigabytes. Don't set the heap space to more memory than your machine has available (and leave at least 500m to 1000m for the system). If you still get memory errors, reduce the maximum motif size, the number of samples, or see if you can work with a smaller dataset (or move to a machine with more memory, of course).