-
Notifications
You must be signed in to change notification settings - Fork 0
/
Rabin.py
374 lines (341 loc) · 18.2 KB
/
Rabin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# -*- coding: utf-8 -*-
"""
Created on Tue May 3 2:28:13 2022
@author: Paul
@file: Rabin.py
"""
# COM 5335 Network Security Assignment #3 陳劭珩 110064533
# Rabin Public-Key Cryptosystem
import random
# the number of primes within 1000 is 168
primeTable1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197,
199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313,
317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439,
443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571,
577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691,
701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829,
839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977,
983, 991, 997]
# the number of primes within 10000 is 1229
primeTable2 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109,
113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241,
251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389,
397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547,
557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691,
701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859,
863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997,
1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123,
1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283,
1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439,
1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571,
1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721,
1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877,
1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029,
2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203,
2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347,
2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503,
2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677,
2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801,
2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969,
2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167,
3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323,
3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491,
3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631,
3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797,
3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947,
3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129,
4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283,
4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481,
4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649,
4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813,
4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993,
4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167,
5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351,
5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507,
5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683,
5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849,
5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043,
6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211,
6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359,
6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563,
6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733,
6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907,
6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069,
7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253,
7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487,
7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621,
7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817,
7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009,
8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191,
8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369,
8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573,
8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731,
8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893,
8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091,
9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277,
9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433,
9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623,
9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791,
9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967,
9973]
#
# search if 'int' target is in 'list' arr or not
def isFound(arr, target: int) -> bool:
"""
:type: arr: List[int]
:type: target: int
:rtype: bool
"""
# binary search
arr.sort() # first sort the list
left = 0
right = len(arr) - 1
while left <= right:
middle = left + (right - left) // 2
if arr[middle] == target:
return True
elif target < arr[middle]:
right = middle - 1
elif target > arr[middle]:
left = middle + 1
return False
# Miller-Rabin Primality Test
def Miller_Rabin_test(n: int) -> bool:
"""
:type: n: int
:rtype: bool
"""
# return False means composite (definitely not prime)
# return True means prime (with high chance its prime)
#
# 1. factorize n - 1 as m * 2^k
k = 0
temp = n - 1
while temp % 2 == 0:
temp = temp // 2
k += 1
else:
m = temp
# 2. primality test
# use the primeTable to filter out small primes and its multiple
for a in primeTable2:
x = [pow(a, m * (2 ** i), n) for i in range(0, k)]
if pow(a, m, n) != 1 and not isFound(x, n - 1):
return False # composite
elif pow(a, m, n) == 1 or isFound(x, n - 1):
continue
return True # 75% chance its prime
# brute force search all primes under n
def brute_force_test(n: int) -> bool:
"""
:type: n: int
:rtype: bool
"""
# return False means not prime
# return True means prime
#
if n <= 1:
return False
elif n <= 3:
return True
#
if n % 2 == 0 or n % 3 == 0:
return False
#
i = 5
while (i * i <= n):
if n % i == 0 or n % (i + 2) == 0:
return False
i += 6
return True
# generate a n-bit random prime
def prime_generater(num_of_bits: int) -> int:
"""
:type: num_of_bits: int
:rtype: int
"""
# as we add up the successful checks required, the corresponding error
# probobility that its not prime would be lower, if we set to 10 times
# then the error prob. that its not prime would be less than 10^-6
SUCCESS = 1 # 10
count = 0 # count the number of successful checks
while True:
# first generate a n-bit random number
num = random.getrandbits(num_of_bits)
# then check if the random number is prime
if Miller_Rabin_test(num):
count += 1
if count == SUCCESS:
return num # return the n-bit random prime
else:
continue
# Find SQROOT in Zp where p = 3 mod 4
def sqrt_p_3_mod_4(a: int, p: int) -> int:
"""
:type: a: int
:type: p: int
:rtype: int
"""
if (p % 2) == 0:
raise ValueError('p must be an odd prime')
# square root of a mod p
r = pow(a, (p + 1) // 4, p) # r = a^((p + 1) / 4) mod p
return r
# Find SQROOT in Zp where p = 5 mod 8
def sqrt_p_5_mod_8(a: int, p: int) -> int:
"""
:type: a: int
:type: p: int
:rtype: int
"""
if (p % 2) == 0:
raise ValueError('p must be an odd prime')
# square root of a mod p
r = 0 # initialized to 0 as 'int'
d = pow(a, (p - 1) // 4, p) # d = a^((p - 1) / 4) mod p
if d == 1:
# if d == 1 mod p
# then r = a^((p + 3) / 8) mod p
r = pow(a, (p + 3) // 8, p)
elif d == p - 1:
# if d == -1 mod p
# then r = 2a * (4a)^((p - 5) / 8) mod p
r = 2 * a * pow(4 * a, (p - 5) // 8, p) % p
return r
# extended euclidean algorithm
def egcd(a: int, b: int):
"""
:type: a: int
:type: b: int
:rtype: gcd, y, x: int, Literal, Literal
"""
if a == 0:
return b, 0, 1
else:
gcd, y, x = egcd(b % a, a)
return gcd, x - (b // a) * y, y
# pad the last 16 bits to the end of the plaintext
def padding(plaintext: int) -> int:
"""
:type: plaintext: int
:rtype: int
"""
bin_str = bin(plaintext) # convert to a bit string
result = bin_str + bin_str[-16:] # pad the last 16 bits to the end
result = int(result, 2) # convert back to integer
# print(result)
return result
# decide which answer to choose
def select(lst):
"""
:type: lst: List[int]
:rtype: int
"""
for i in lst:
binary = bin(i)
append = binary[-16:] # take the last 16 bits
binary = binary[:-16] # remove the last 16 bits
if append == binary[-16:]:
return i
return -1
# Rabin encryption function
def Rabin_encrypt(plaintext: int, n: int) -> int:
"""
:type: plaintext: int
:type: n: int
:rtype: ciphertext: int
"""
# c = m^2 mod n
plaintext = padding(plaintext)
ciphertext = plaintext ** 2 % n
# print(ciphertext)
return ciphertext
# Rabin decryption function
def Rabin_decrypt(ciphertext: int, p: int, q: int) -> int:
"""
:type: ciphertext: int
:type: p: int
:type: q: int
:rtype: plaintext: int
"""
n = p * q
r, s = 0, 0
# find sqrt for p
if p % 4 == 3:
r = sqrt_p_3_mod_4(ciphertext, p)
elif p % 8 == 5:
r = sqrt_p_5_mod_8(ciphertext, p)
# find sqrt for q
if q % 4 == 3:
s = sqrt_p_3_mod_4(ciphertext, q)
elif q % 8 == 5:
s = sqrt_p_5_mod_8(ciphertext, q)
gcd, c, d = egcd(p, q)
if gcd != 1:
raise ValueError('modular inverse does not exist')
x = (r * d * q + s * c * p) % n
y = (r * d * q - s * c * p) % n
lst = [x, n - x, y, n - y]
plaintext = select(lst)
string = bin(plaintext)
string = string[:-16]
plaintext = int(string, 2)
#
return plaintext
def main():
# Miller-Rabin 256-bit random prime generation
print("\n------------------------------------------ <Miller-Rabin> --------------------------------------------------")
result = format(prime_generater(256), 'x') # convert the random prime from int into hex, store in result
print("256-bit random prime in dec:", int(result, 16)) # output random prime in dec
print("256-bit random prime in hex:", result) # output random prime in hex
#
## check if the random prime is actually 256-bit
# length = len(result) * 4
# print(f"(length: {length}-bit)")
# Rabin Encryption
print("\n----------------------------------------- <Rabin Encryption> -----------------------------------------------")
# given sample input of p, q, and plaintext, compute the corresponding n, and ciphertext
# NOTE: no space allowed in the input field
# store given plaintext as string type in plaintextstr
plaintextstr = 'be000badbebadbadbad00debdeadfacedeafbeefadd00addbed00bed'
print("224-bit Plaintext =", plaintextstr) # plaintext has 224 bits
# convert plaintextstr from hex into integer type, store in plaintext
plaintext = int(plaintextstr, 16)
# store given private keys p, q as string type in pstr, qstr
pstr = 'daaefe652cad1614f17e87f2cd80973f' # p = daaefe652cad1614f17e87f2cd80973f
qstr = 'f99988626723eef2a54ed484dfa735c7' # q = f99988626723eef2a54ed484dfa735c7
print("128-bit p =", pstr)
print("128-bit q =", qstr)
# convert pstr, qstr from hex into integer type, store in p, q
p = int(pstr, 16)
q = int(qstr, 16)
n = p * q
print('256-bit n = pq =', format(n, 'x')) # output n in hex
# store the encrypted result as integer type in ciphertext
ciphertext = Rabin_encrypt(plaintext, n)
print('256-bit Ciphertext =', format(ciphertext, 'x')) # output ciphertext in hex
# Rabin Decryption
print("\n---------------------------------------- <Rabin Decryption> ------------------------------------------------")
# given sample input of p, q and ciphertext, compute the corresponding plaintext
# NOTE: no space allowed in the input field
# store given ciphertext as string type in ciphertextstr
ciphertextstr = '5452361adb4c34be04a5903ae00793bc1086e887ebed06e23ffba0b4a4348cc0'
# convert ciphertextstr from hex into integer type, store in ciphertext
ciphertext = int(ciphertextstr, 16)
print('256-bit Ciphertext =', ciphertextstr) # output ciphertext in hex
# store given private keys p, q as string type in pstr, qstr
pstr = 'd5e68b2b5855059ad1a80dd6c5dc03eb' # p = d5e68b2b5855059ad1a80dd6c5dc03eb
qstr = 'c96c6afc57ce0f53396d3b32049fe2d3' # q = c96c6afc57ce0f53396d3b32049fe2d3
print("128-bit p =", pstr)
print("128-bit q =", qstr)
# convert pstr, qstr from hex into integer type, store in p, q
p = int(pstr, 16)
q = int(qstr, 16)
# store the decrypted result as integer type in plaintext
plaintext = Rabin_decrypt(ciphertext, p, q)
print('224-bit Plaintext =', format(plaintext, 'x').zfill(226 // 4)) # output plaintext in hex
print("\n----------------------------------------------------------------------------------------------------------")
# main()
if __name__ == '__main__':
main()