Datafast is a Python package for high-quality and diverse synthetic text dataset generation.
It is designed to help you get the data you need to:
- Experiment and test LLM-based applications
- Fine-tune and evaluate language models (LLMs / NLP)
Warning
This library is in its early stages of development and might change significantly.
Currently we support the following dataset types:
- ✅ Text Classification
- ✅ Raw Text Generation
- ✅ Instruction Dataset (UltraChat-like)
- Preference Dataset
- 📋 More coming soon!
⭐️ Star me if this is something you like! 🌟
Currently we support the following LLM providers:
- ✔︎ OpenAI
- ✔︎ Anthropic
- ✔︎ Ollama
- ✔︎ HF Endpoints (buggy!)
- Easy-to-use and simple interface 🚀
- Multi-lingual datasets generation 🌍
- Multiple LLMs used to boost dataset diversity 🤖
- Flexible prompt: default or custom 📝
- Prompt expansion to maximize diversity 🔄
- Hugging Face Integration: Push generated datasets to the Hub 🤗
pip install datafast
Make sure you have created a secrets.env
file with your API keys.
HF token is needed if you want to push the dataset to your HF hub.
Other keys depends on which LLM providers you use.
GOOGLE_API_KEY=XXXX
OPENAI_API_KEY=sk-XXXX
ANTHROPIC_API_KEY=sk-ant-XXXXX
HF_TOKEN=hf_XXXXX
from datafast.datasets import TextClassificationDataset
from datafast.schema.config import ClassificationConfig, PromptExpansionConfig
from datafast.llms import OpenAIProvider, AnthropicProvider, GoogleProvider
from dotenv import load_dotenv
# Load environment variables
load_dotenv("secrets.env") # <--- your API keys
# Configure the dataset for text classification
config = ClassificationConfig(
classes=[
{"name": "positive", "description": "Text expressing positive emotions or approval"},
{"name": "negative", "description": "Text expressing negative emotions or criticism"}
],
num_samples_per_prompt=5,
output_file="outdoor_activities_sentiments.jsonl",
languages={
"en": "English",
"fr": "French"
},
prompts=[
(
"Generate {num_samples} reviews in {language_name} which are diverse "
"and representative of a '{label_name}' sentiment class. "
"{label_description}. The reviews should be {{style}} and in the "
"context of {{context}}."
)
],
expansion=PromptExpansionConfig(
placeholders={
"context": ["hike review", "speedboat tour review", "outdoor climbing experience"],
"style": ["brief", "detailed"]
},
combinatorial=True
)
)
# Create LLM providers
providers = [
OpenAIProvider(model_id="gpt-4o-mini"),
AnthropicProvider(model_id="claude-3-5-haiku-latest"),
GoogleProvider(model_id="gemini-1.5-flash")
]
# Generate dataset
dataset = TextClassificationDataset(config)
dataset.generate(providers)
# Optional: Push to Hugging Face Hub
dataset.push_to_hub(
repo_id="YOUR_USERNAME/YOUR_DATASET_NAME",
train_size=0.6
)
Check out our guides for different dataset types (coming soon):
- How to Generate a Text Classification Dataset
- How to Create a Raw Text Dataset
- Visit our GitHub repository for the latest updates
Made with ❤️ by Patrick Fleith.
- Status: Work in Progress (APIs may change)
- License: Apache 2.0