Structure prediction of alternative protein conformations
Cfold is a structure prediction network similar to AlphaFold2 that is trained on a conformational split of the PDB. Cfold is designed for predicting alternative conformations of protein structures. Read more about it here
AlphaFold2 is available under the Apache License, Version 2.0 and so is Cfold, which is a derivative thereof. The Cfold parameters are made available under the terms of the CC BY 4.0 license.
You may not use these files except in compliance with the licenses.
- For the python environment, we recommend to install it with pip as described below.
You can do this in your virtual environment of choice.
pip install -U jaxlib==0.3.24+cuda11.cudnn82 -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
pip install jax==0.3.24
pip install ml-collections==0.1.1
pip install dm-haiku==0.0.9
pip install pandas==1.3.5
pip install biopython==1.81
pip install chex==0.1.5
pip install dm-tree==0.1.8
pip install immutabledict==2.0.0
pip install numpy==1.21.6
pip install scipy==1.7.3
pip install tensorflow==2.11.0
pip install optax==0.1.4
wget https://gitlab.com/patrickbryant1/cfold_data/-/raw/main/params10000.npy
wget http://wwwuser.gwdg.de/~compbiol/uniclust/2018_08/uniclust30_2018_08_hhsuite.tar.gz --no-check-certificate
mkdir data/uniclust30
mv uniclust30_2018_08_hhsuite.tar.gz data/uniclust30
tar -zxvf data/uniclust30/uniclust30_2018_08_hhsuite.tar.gz
git clone https://github.com/soedinglab/hh-suite.git
mkdir -p hh-suite/build && cd hh-suite/build
cmake -DCMAKE_INSTALL_PREFIX=. ..
make -j 4 && make install
cd ..
ID=4AVA
FASTA_DIR=./data/test/
UNICLUST=./data/uniclust30_2018_08/uniclust30_2018_08
OUTDIR=./data/test/
./hh-suite/build/bin/hhblits -i $FASTA_DIR/$ID.fasta -d $UNICLUST -E 0.001 -all -oa3m $OUTDIR/$ID'.a3m'
MSA_DIR=./data/test/
OUTDIR=./data/test/
python3 ./src/make_msa_seq_feats.py --input_fasta_path $FASTA_DIR/$ID'.fasta' \
--input_msas $MSA_DIR/$ID'.a3m' --outdir $OUTDIR
FEATURE_DIR=./data/test/
PARAMS=./params10000.npy
OUTDIR=./data/test/
NUM_REC=3 #Increase for hard targets
NUM_SAMPLES=13 #Increase for hard targets
python3 ./src/net/predict_with_clusters.py --feature_dir $FEATURE_DIR \
--predict_id $ID \
--ckpt_params $PARAMS \
--num_recycles $NUM_REC \
--num_samples_per_cluster $NUM_SAMPLES \
--outdir $OUTDIR/