-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_transcription.py
96 lines (79 loc) · 3.02 KB
/
test_transcription.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/env python3
"""
ctrlSPEAK Test - A script for testing transcription with detailed logging.
"""
import torch
import sys
import os
import time
import argparse
import logging
from models.factory import ModelFactory
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler()
]
)
logger = logging.getLogger("ctrlspeak-test")
def transcribe_audio(audio_file, model_type, verbose=False):
"""
Transcribe an audio file using the specified model.
Args:
audio_file: Path to the audio file to transcribe.
model_type: Type of model to use (parakeet, canary, or whisper).
verbose: Whether to enable verbose logging.
Returns:
The transcription result.
"""
if verbose:
logger.setLevel(logging.DEBUG)
# Check if file exists
if not os.path.exists(audio_file):
logger.error(f"Audio file not found: {audio_file}")
return None
# Enable MPS (Metal) acceleration if available
device = torch.device("mps") if torch.backends.mps.is_available() else torch.device("cpu")
logger.info(f"Using device: {device}")
# Load model
logger.info(f"Loading {model_type} model...")
start_time = time.time()
model = ModelFactory.get_model(model_type=model_type, device=device, verbose=verbose)
model.load_model()
load_time = time.time() - start_time
logger.info(f"Model loaded in {load_time:.2f} seconds")
# Transcribe audio
logger.info(f"Transcribing {audio_file}...")
start_time = time.time()
# Transcribe using our simplified API
result = model.transcribe(audio_file)
end_time = time.time()
transcribe_time = end_time - start_time
# Print results
logger.info(f"Transcription completed in {transcribe_time:.2f} seconds")
if result:
logger.info("-" * 50)
logger.info(f"Transcription: {result}")
logger.info("-" * 50)
else:
logger.warning("No transcription result")
return result
def main():
"""Main entry point"""
parser = argparse.ArgumentParser(description="ctrlSPEAK Test - Test transcription on an audio file")
parser.add_argument("audio_file", help="Path to the audio file to transcribe")
parser.add_argument("--model", choices=["parakeet", "canary", "whisper"], default="parakeet",
help="Model to use for transcription (default: parakeet)")
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging")
args = parser.parse_args()
# Print PyTorch info
logger.info(f"PyTorch version: {torch.__version__}")
logger.info(f"CUDA available: {torch.cuda.is_available()}")
logger.info(f"MPS available: {torch.backends.mps.is_available()}")
logger.info(f"MPS backend enabled: {torch.backends.mps.is_built()}")
# Transcribe
transcribe_audio(args.audio_file, args.model, args.verbose)
if __name__ == "__main__":
main()