Skip to content

Commit 2186b84

Browse files
committed
Add corrective rag code
1 parent e07dccf commit 2186b84

File tree

1 file changed

+6
-4
lines changed

1 file changed

+6
-4
lines changed

firecrawl-agent/README.md

Lines changed: 6 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ This project implements an intelligent RAG (Retrieval-Augmented Generation) syst
1212
- **Vector Storage**: Uses Milvus for efficient document storage and retrieval
1313
- **Relevance Filtering**: Intelligent filtering of retrieved documents for better accuracy
1414

15-
## 🛠️ Tech Stack
15+
## Tech Stack
1616

1717
- **LlamaIndex**: Core RAG framework for document processing and retrieval
1818
- **FireCrawl**: Web scraping and search API for real-time information
@@ -59,7 +59,7 @@ FIRECRAWL_API_KEY="your_firecrawl_api_key_here"
5959
OPENAI_API_KEY="your_openai_api_key_here"
6060
```
6161

62-
## 🚀 Running the Project
62+
## Running the Project
6363

6464
### Option 1: Streamlit App (Recommended)
6565
```bash
@@ -76,7 +76,7 @@ python start_server.py
7676
jupyter notebook
7777
```
7878

79-
## 📖 How It Works
79+
## How It Works
8080

8181
1. **Document Upload**: Users upload PDF documents through the Streamlit interface
8282
2. **Document Processing**: Documents are processed, embedded, and stored in vector databases
@@ -86,10 +86,12 @@ jupyter notebook
8686
6. **Answer Generation**: The LLM generates comprehensive answers using both document and web content
8787
7. **Relevance Filtering**: Results are filtered for relevance to ensure accuracy
8888

89-
## 🔄 Workflow Architecture
89+
## Workflow Architecture
9090

9191
The Corrective RAG workflow consists of several key steps:
9292

93+
![Workflow Architecture](assets/animation.gif)
94+
9395
- **Start Event**: Initializes the workflow with user query
9496
- **Retrieve**: Retrieves relevant documents from vector store
9597
- **Web Search**: Performs web searches using FireCrawl when needed

0 commit comments

Comments
 (0)