@@ -12,7 +12,7 @@ This project implements an intelligent RAG (Retrieval-Augmented Generation) syst
1212- ** Vector Storage** : Uses Milvus for efficient document storage and retrieval
1313- ** Relevance Filtering** : Intelligent filtering of retrieved documents for better accuracy
1414
15- ## 🛠️ Tech Stack
15+ ## Tech Stack
1616
1717- ** LlamaIndex** : Core RAG framework for document processing and retrieval
1818- ** FireCrawl** : Web scraping and search API for real-time information
@@ -59,7 +59,7 @@ FIRECRAWL_API_KEY="your_firecrawl_api_key_here"
5959OPENAI_API_KEY=" your_openai_api_key_here"
6060```
6161
62- ## 🚀 Running the Project
62+ ## Running the Project
6363
6464### Option 1: Streamlit App (Recommended)
6565``` bash
@@ -76,7 +76,7 @@ python start_server.py
7676jupyter notebook
7777```
7878
79- ## 📖 How It Works
79+ ## How It Works
8080
81811 . ** Document Upload** : Users upload PDF documents through the Streamlit interface
82822 . ** Document Processing** : Documents are processed, embedded, and stored in vector databases
@@ -86,10 +86,12 @@ jupyter notebook
86866 . ** Answer Generation** : The LLM generates comprehensive answers using both document and web content
87877 . ** Relevance Filtering** : Results are filtered for relevance to ensure accuracy
8888
89- ## 🔄 Workflow Architecture
89+ ## Workflow Architecture
9090
9191The Corrective RAG workflow consists of several key steps:
9292
93+ ![ Workflow Architecture] ( assets/animation.gif )
94+
9395- ** Start Event** : Initializes the workflow with user query
9496- ** Retrieve** : Retrieves relevant documents from vector store
9597- ** Web Search** : Performs web searches using FireCrawl when needed
0 commit comments