-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfederated_learning.py
109 lines (78 loc) · 3.43 KB
/
federated_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import math
from utility import *
class FL_server:
" Simulate FL up to the Secure Aggregation phase "
def __init__(self, users, model, suppressing_technique, target=0):
self.users = users
self.num_users = len(users)
self.target = target
self.model = model
self.global_parameters = model.trainable_variables
self.suppressing_technique = suppressing_technique
self.gradients = [None] * self.num_users
def models_distribution(self):
suppressed_parameters = self.suppressing_technique(self.model)
for i, user_i in enumerate(self.users):
# Model Inconsistency
if i == self.target:
print(f"Sending honest parameters to user {i}")
# target user. Send normal parameter
parameters = clone_list_tensors(self.global_parameters)
else:
print(f"Sending tampered parameters to user {i}")
parameters = clone_list_tensors(suppressed_parameters)
user_i.set_model(parameters)
print("End model distribution\n")
def SA(self):
# Virtual Secure Aggregation
gradients = [None] * self.num_users
for i, user_i in enumerate(self.users):
print(f"Receiving and aggregating model update from user {i}")
g = user_i.local_training()
gradients[i] = g
agg_model_update = sum_list_tensors(gradients)
agg_model_update = [x.numpy() for x in agg_model_update]
print("End aggregation\n")
return agg_model_update
class FL_SGD_client_classification:
" A FedSGD user "
@staticmethod
def loss(y, y_):
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False)(y, y_)
loss = tf.reduce_mean(loss)
return loss
def __init__(self, model, training_set):
self.model = model
self.training_set = iter(training_set.repeat(-1))
self.gradient = None
self.data = None
def set_model(self, parameters):
assign_list_tensors(self.model.trainable_variables, parameters)
def local_training(self):
x, y = next(self.training_set)
with tf.GradientTape() as tape:
y_ = self.model(x)
l = self.loss(y, y_)
g = tape.gradient(l, self.model.trainable_variables)
self.gradient = [x.numpy() for x in g]
self.data = x.numpy(), y.numpy()
return g
def setup_users_classification(User, num_users, model, global_dataset, local_training_set_size, batch_size, parse_x):
X, Y = global_dataset
assert len(X) == len(Y)
nds = len(X)
assert local_training_set_size * num_users <= nds
X = parse_x(X)
users = [None] * num_users
for i in range(num_users):
X_i = X[i*local_training_set_size:(i+1)*local_training_set_size]
Y_i = Y[i*local_training_set_size:(i+1)*local_training_set_size]
X_i = tf.data.Dataset.from_tensor_slices(X_i)
Y_i = tf.data.Dataset.from_tensor_slices(Y_i)
XY_i = tf.data.Dataset.zip((X_i, Y_i)).batch(batch_size)
model_i = deepCopyModel(model)
users[i] = User(model_i, XY_i)
return users