-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
84 lines (68 loc) · 2.56 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import torchmetrics
import torch
def step(data, model_type, device, model, criterion, outputEDA=None):
if model_type == "SBERT":
s1, s2, label, aux = data
s1 = s1.to(device)
s2 = s2.to(device)
label = label.to(device)
logits = model(s1, s2).squeeze()
loss = criterion(logits, label)
score = torchmetrics.functional.pearson_corrcoef(logits, label.squeeze())
if outputEDA != None:
outputEDA.appendf(label, logits, aux, s1, s2)
elif model_type == "MLM":
s1, label = data
s1 = s1.to(device)
label = label.to(device)
logits = model(s1).squeeze()
loss = criterion(logits.transpose(1, 2), label)
score = torch.exp(loss)
elif model_type == "BERT":
s1, label, aux = data
s1 = s1.to(device)
label = label.to(device)
logits = model(s1).squeeze()
loss = criterion(logits, label)
score = torchmetrics.functional.pearson_corrcoef(logits, label.squeeze())
if outputEDA != None:
outputEDA.appendf(label, logits, aux, s1, None)
elif model_type == "BERT_NLI":
s1, label, aux = data
s1 = s1.to(device)
label = label.to(device)
logits = model(s1).squeeze()
loss = criterion(logits, label)
score = torch.sum(torch.max(logits, dim=1).indices == label) / s1.shape[0]
elif model_type == "SimCSE":
s1, label = data
s1 = s1.to(device)
label = label.to(device)
logits, cos_sim = model(s1)
loss = criterion(cos_sim, label)
score = torch.IntTensor([0])
return logits, loss, score
def train_step(data, model_type, device, model, criterion, optimizer):
logits, loss, score = step(data, model_type, device, model, criterion)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss= loss.detach().item()
score = score.detach().item()
return loss, score
def valid_step(data, model_type, device, model, criterion, outputEDA):
logits, loss, score = step(data, model_type, device, model, criterion, outputEDA)
loss= loss.detach().item()
score = score.detach().item()
return logits, loss, score
def test_step(data, model_type, device, model):
if model_type == "SBERT":
s1, s2, label = data
s1 = s1.to(device)
s2 = s2.to(device)
logits = model(s1, s2).squeeze()
else:
s1, label = data
s1 = s1.to(device)
logits = model(s1).squeeze()
return logits