forked from githubharald/SimpleHTR
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdetect.py
71 lines (58 loc) · 2.78 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import argparse
import os
import cv2
import matplotlib.pyplot as plt
import numpy as np
from path import Path
from word_detector import detect, prepare_img, sort_multiline
def get_img_files(data_dir: Path) -> list[Path]:
"""Return all image files contained in a folder."""
res = []
for ext in ['*.png', '*.jpg', '*.bmp']:
res += Path(data_dir).files(ext)
return res
def main():
current_file = os.path.abspath(__file__)
current_directory = os.path.dirname(current_file)
#print("Current Directory:", current_directory)
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=Path, default=Path(current_directory)/'data'/'page')
parser.add_argument('--kernel_size', type=int, default=25)
parser.add_argument('--sigma', type=float, default=11)
parser.add_argument('--theta', type=float, default=7)
parser.add_argument('--min_area', type=int, default=100)
parser.add_argument('--img_height', type=int, default=1080)
parsed = parser.parse_args()
for fn_img in get_img_files(parsed.data):
print(f'Processing file {fn_img}')
# load image and process it
img = prepare_img(cv2.imread(str(fn_img)), parsed.img_height)
detections = detect(img,
kernel_size=parsed.kernel_size,
sigma=parsed.sigma,
theta=parsed.theta,
min_area=parsed.min_area)
# sort detections: cluster into lines, then sort each line
lines = sort_multiline(detections)
output_dir = './output'
os.makedirs(output_dir, exist_ok=True)
# save each word as a separate image
for line_idx, line in enumerate(lines):
for word_idx, det in enumerate(line):
xs = [det.bbox.x, det.bbox.x, det.bbox.x + det.bbox.w, det.bbox.x + det.bbox.w, det.bbox.x]
ys = [det.bbox.y, det.bbox.y + det.bbox.h, det.bbox.y + det.bbox.h, det.bbox.y, det.bbox.y]
plt.plot(xs, ys)
plt.text(det.bbox.x, det.bbox.y, f'{line_idx}/{word_idx}')
output_filename = f'{os.path.splitext(fn_img.name)[0]}_{line_idx}_{word_idx}.png'
output_path = os.path.join(output_dir, output_filename)
separated_image = img[det.bbox.y:det.bbox.y + det.bbox.h, det.bbox.x:det.bbox.x + det.bbox.w]
separated_image = np.array(separated_image)
cv2.imwrite(output_path, separated_image)
# save the image with bounding boxes
# output_filename = f'{os.path.splitext(fn_img.name)[0]}_bounding_boxes.png'
# output_path = os.path.join(output_dir, output_filename)
# plt.imshow(img, cmap='gray')
# plt.savefig(output_path)
plt.clf()
if __name__ == '__main__':
main()