Skip to content

PERF: DataFrame.all(axis="columns") orders of magnitude slower for bool[pyarrow] #54389

Closed
@randolf-scholz

Description

@randolf-scholz

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this issue exists on the latest version of pandas.

  • I have confirmed this issue exists on the main branch of pandas.

Reproducible Example

import pandas as pd
import numpy as np
from functools import reduce
import operator

data = np.random.randn(10_000, 10) > 0.5  # larger won't even finish
df_numpy = pd.DataFrame(data, dtype=bool)
df_arrow = df_numpy.astype("bool[pyarrow]")

%timeit df_numpy.all(axis="index")     # 208 µs ± 813 µs
%timeit df_numpy.all(axis="columns")   # 294 µs ± 3.4 µs

%timeit df_arrow.all(axis="index")     # 987 µs ± 3.93 µs
%timeit df_arrow.all(axis="columns")   # 812 ms ± 7.5 ms  (!!!)

%timeit reduce(operator.__and__, (s for _, s in df_arrow.items()))  # 421 µs ± 7.65 µs

Larger examples won't even run, so presumably it falls back to some pure python implementation.

Installed Versions

INSTALLED VERSIONS
------------------
commit           : 232d84e9a5add831c753e67f1c88863442dc3c92
python           : 3.10.11.final.0
python-bits      : 64
OS               : Linux
OS-release       : 5.19.0-50-generic
Version          : #50-Ubuntu SMP PREEMPT_DYNAMIC Mon Jul 10 18:24:29 UTC 2023
machine          : x86_64
processor        : x86_64
byteorder        : little
LC_ALL           : None
LANG             : en_US.UTF-8
LOCALE           : en_US.UTF-8

pandas           : 2.1.0.dev0+1375.g232d84e9a5
numpy            : 1.24.4
pytz             : 2023.3
dateutil         : 2.8.2
setuptools       : 65.5.0
pip              : 23.2.1
Cython           : 0.29.33
pytest           : 7.4.0
hypothesis       : 6.82.0
sphinx           : 6.2.1
blosc            : 1.11.1
feather          : None
xlsxwriter       : 3.1.2
lxml.etree       : 4.9.3
html5lib         : 1.1
pymysql          : 1.4.6
psycopg2         : 2.9.6
jinja2           : 3.1.2
IPython          : 8.14.0
pandas_datareader: None
bs4              : 4.12.2
bottleneck       : 1.3.7
brotli           : 
fastparquet      : 2023.7.0
fsspec           : 2023.6.0
gcsfs            : 2023.6.0
matplotlib       : 3.7.2
numba            : 0.57.1
numexpr          : 2.8.4
odfpy            : None
openpyxl         : 3.1.2
pandas_gbq       : None
pyarrow          : 12.0.1
pyreadstat       : 1.2.2
pyxlsb           : 1.0.10
s3fs             : 2023.6.0
scipy            : 1.11.1
snappy           : 
sqlalchemy       : 2.0.19
tables           : 3.8.0
tabulate         : 0.9.0
xarray           : 2023.7.0
xlrd             : 2.0.1
zstandard        : 0.21.0
tzdata           : 2023.3
qtpy             : None
pyqt5            : None

Prior Performance

No response

Metadata

Metadata

Assignees

No one assigned

    Labels

    PerformanceMemory or execution speed performanceReduction Operationssum, mean, min, max, etc.

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions