BUG: reduction operations failing if min_count
is larger #39738
Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
>>> import pandas as pd
>>> df = pd.DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]})
>>> df
x y
0 1 4
1 2 5
2 3 6
>>> df.sum(min_count=10)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/nvme/0/pgali/envs/cudfdev/lib/python3.7/site-packages/pandas/core/generic.py", line 11067, in sum
self, axis, skipna, level, numeric_only, min_count, **kwargs
File "/nvme/0/pgali/envs/cudfdev/lib/python3.7/site-packages/pandas/core/generic.py", line 10787, in sum
"sum", nanops.nansum, axis, skipna, level, numeric_only, min_count, **kwargs
File "/nvme/0/pgali/envs/cudfdev/lib/python3.7/site-packages/pandas/core/generic.py", line 10774, in _min_count_stat_function
min_count=min_count,
File "/nvme/0/pgali/envs/cudfdev/lib/python3.7/site-packages/pandas/core/frame.py", line 8847, in _reduce
res, indexer = df._mgr.reduce(blk_func, ignore_failures=ignore_failures)
File "/nvme/0/pgali/envs/cudfdev/lib/python3.7/site-packages/pandas/core/internals/managers.py", line 354, in reduce
nbs = blk.reduce(func, ignore_failures)
File "/nvme/0/pgali/envs/cudfdev/lib/python3.7/site-packages/pandas/core/internals/blocks.py", line 400, in reduce
nb = self.make_block(res_values)
File "/nvme/0/pgali/envs/cudfdev/lib/python3.7/site-packages/pandas/core/internals/blocks.py", line 286, in make_block
return make_block(values, placement=placement, ndim=self.ndim)
File "/nvme/0/pgali/envs/cudfdev/lib/python3.7/site-packages/pandas/core/internals/blocks.py", line 2732, in make_block
return klass(values, ndim=ndim, placement=placement)
File "/nvme/0/pgali/envs/cudfdev/lib/python3.7/site-packages/pandas/core/internals/blocks.py", line 143, in __init__
f"Wrong number of items passed {len(self.values)}, "
ValueError: Wrong number of items passed 1, placement implies 2
This actually works in 1.1.5
:
>>> df
x y
0 1 4
1 2 5
2 3 6
>>> df.sum(min_count=10)
x NaN
y NaN
dtype: float64
Problem description
Reduction operations like sum
, prod
, etc.. are failing when min_count
is larger in latest pandas, whereas this used to work in 1.1.5
.
Expected Output
>>> df
x y
0 1 4
1 2 5
2 3 6
>>> df.sum(min_count=10)
x NaN
y NaN
dtype: float64
Output of pd.show_versions()
INSTALLED VERSIONS
commit : 9d598a5
python : 3.7.9.final.0
python-bits : 64
OS : Linux
OS-release : 4.15.0-76-generic
Version : #86-Ubuntu SMP Fri Jan 17 17:24:28 UTC 2020
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.2.1
numpy : 1.19.5
pytz : 2021.1
dateutil : 2.8.1
pip : 21.0.1
setuptools : 49.6.0.post20210108
Cython : 0.29.21
pytest : 6.2.2
hypothesis : 6.1.1
sphinx : 3.4.3
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.3
IPython : 7.20.0
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : 0.8.5
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 1.0.1
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : 0.52.0