Skip to content

groupby and resample methods do not preserve subclassed data structures #28330

Closed
@grge

Description

@grge

Code sample

class MyDataFrame(pd.DataFrame):
    @property
    def _constructor(self):
        return MyDataFrame

dates = pd.date_range('2019', freq='H', periods=1000)
my_df = MyDataFrame(np.arange(len(dates)), index=dates)

print(type(my_df)) 
# __main__.MyDataFrame (✓)

print(type(my_df.diff())) 
# __main__.MyDataFrame (✓)

print(type(my_df.sample(1))) 
# __main__.MyDataFrame (✓)

print(type(my_df.rolling('5H').mean()))
# __main__.MyDataFrame (✓)

print(type(my_df.groupby(my_df.index.dayofweek).mean()))
# pandas.core.frame.DataFrame (✘)

print(type(my_df.resample('D').mean()))
# pandas.core.frame.DataFrame (✘)

Problem description

Originally posted on SO.

The intended behaviour for chain-able methods on subclassed data structures is clearly that the operation returns an instance of the subclass (i.e. MyDataFrame), rather than the native type (i.e. DataFrame). This is the current behaviour for most operations (e.g., slicing, sampling, sorting) but not resample and groupby.

Currently groupby and resample both return explicitly constructed pandas datatypes, e.g. here:

return DataFrame(result, columns=result_columns)

To get the expected behaviour, the intermediary classes (e.g. DataFrameGroupBy) would need to retain information about the calling class so that the appropriate constructor can be used (i.e. one of _constructor or _constructor_sliced or _constructor_expanddim).

Note that operations that use Window and Rolling already appear have the expected behaviour because these assemble their results via a call to concat such as this one:

return concat(final, axis=1).reindex(columns=columns, copy=False)

Output of pd.show_versions()

INSTALLED VERSIONS ------------------ commit : None python : 3.7.4.final.0 python-bits : 64 OS : Windows OS-release : 10 machine : AMD64 processor : Intel64 Family 6 Model 142 Stepping 9, GenuineIntel byteorder : little LC_ALL : None LANG : None LOCALE : None.None

pandas : 0.25.1
numpy : 1.17.1
pytz : 2019.2
dateutil : 2.8.0
pip : 19.2.3
setuptools : 40.8.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.10.1
IPython : 7.8.0
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : 3.1.1
numexpr : 2.7.0
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
s3fs : None
scipy : 1.3.1
sqlalchemy : None
tables : 3.5.2
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    Compatpandas objects compatability with Numpy or Python functionsGroupby

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions