Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

BUG: pivot_table with margins=True fails for categorical dtype #10989

Closed
jakevdp opened this issue Sep 4, 2015 · 5 comments
Closed

BUG: pivot_table with margins=True fails for categorical dtype #10989

jakevdp opened this issue Sep 4, 2015 · 5 comments
Labels
Bug Categorical Categorical Data Type Reshaping Concat, Merge/Join, Stack/Unstack, Explode
Milestone

Comments

@jakevdp
Copy link
Contributor

jakevdp commented Sep 4, 2015

First, an example that works as expected (non-categorical):

In [22]: pd.__version__
Out[22]: '0.16.2'

In [23]: data = pd.DataFrame({'x': np.arange(99),
                     'y': np.arange(99) // 50,
                     'z': np.arange(99) % 3})

In [24]: data.pivot_table('x', 'y', 'z')
Out[24]: 
z     0     1     2
y                  
0  24.0  25.0  24.5
1  73.5  74.5  74.0

In [25]: data.pivot_table('x', 'y', 'z', margins=True)
Out[25]: 
z       0     1     2   All
y                          
0    24.0  25.0  24.5  24.5
1    73.5  74.5  74.0  74.0
All  48.0  49.0  50.0  49.0

Now convert y and z to categories; pivot table works without margins but fails with:

In [27]: data.y = data.y.astype('category')

In [28]: data.z = data.z.astype('category')

In [29]: data.pivot_table('x', 'y', 'z')
Out[29]: 
z     0     1     2
y                  
0  24.0  25.0  24.5
1  73.5  74.5  74.0

In [32]: data.pivot_table('x', 'y', 'z', margins=True)
---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
/Users/jakevdp/anaconda/envs/py3k/lib/python3.3/site-packages/pandas/core/internals.py in set(self, item, value, check)
   2979         try:
-> 2980             loc = self.items.get_loc(item)
   2981         except KeyError:

/Users/jakevdp/anaconda/envs/py3k/lib/python3.3/site-packages/pandas/core/index.py in get_loc(self, key, method)
   5072             key = tuple(map(_maybe_str_to_time_stamp, key, self.levels))
-> 5073             return self._engine.get_loc(key)
   5074 

pandas/index.pyx in pandas.index.IndexEngine.get_loc (pandas/index.c:3824)()

pandas/index.pyx in pandas.index.IndexEngine.get_loc (pandas/index.c:3704)()

pandas/hashtable.pyx in pandas.hashtable.PyObjectHashTable.get_item (pandas/hashtable.c:12280)()

pandas/hashtable.pyx in pandas.hashtable.PyObjectHashTable.get_item (pandas/hashtable.c:12231)()

KeyError: ('x', 'All')

During handling of the above exception, another exception occurred:

TypeError                                 Traceback (most recent call last)
<ipython-input-32-7436e0e1c9bb> in <module>()
----> 1 data.pivot_table('x', 'y', 'z', margins=True)

/Users/jakevdp/anaconda/envs/py3k/lib/python3.3/site-packages/pandas/tools/pivot.py in pivot_table(data, values, index, columns, aggfunc, fill_value, margins, dropna)
    141     if margins:
    142         table = _add_margins(table, data, values, rows=index,
--> 143                              cols=columns, aggfunc=aggfunc)
    144 
    145     # discard the top level

/Users/jakevdp/anaconda/envs/py3k/lib/python3.3/site-packages/pandas/tools/pivot.py in _add_margins(table, data, values, rows, cols, aggfunc)
    167 
    168     if values:
--> 169         marginal_result_set = _generate_marginal_results(table, data, values, rows, cols, aggfunc, grand_margin)
    170         if not isinstance(marginal_result_set, tuple):
    171             return marginal_result_set

/Users/jakevdp/anaconda/envs/py3k/lib/python3.3/site-packages/pandas/tools/pivot.py in _generate_marginal_results(table, data, values, rows, cols, aggfunc, grand_margin)
    236                 # we are going to mutate this, so need to copy!
    237                 piece = piece.copy()
--> 238                 piece[all_key] = margin[key]
    239 
    240                 table_pieces.append(piece)

/Users/jakevdp/anaconda/envs/py3k/lib/python3.3/site-packages/pandas/core/frame.py in __setitem__(self, key, value)
   2125         else:
   2126             # set column
-> 2127             self._set_item(key, value)
   2128 
   2129     def _setitem_slice(self, key, value):

/Users/jakevdp/anaconda/envs/py3k/lib/python3.3/site-packages/pandas/core/frame.py in _set_item(self, key, value)
   2203         self._ensure_valid_index(value)
   2204         value = self._sanitize_column(key, value)
-> 2205         NDFrame._set_item(self, key, value)
   2206 
   2207         # check if we are modifying a copy

/Users/jakevdp/anaconda/envs/py3k/lib/python3.3/site-packages/pandas/core/generic.py in _set_item(self, key, value)
   1194 
   1195     def _set_item(self, key, value):
-> 1196         self._data.set(key, value)
   1197         self._clear_item_cache()
   1198 

/Users/jakevdp/anaconda/envs/py3k/lib/python3.3/site-packages/pandas/core/internals.py in set(self, item, value, check)
   2981         except KeyError:
   2982             # This item wasn't present, just insert at end
-> 2983             self.insert(len(self.items), item, value)
   2984             return
   2985 

/Users/jakevdp/anaconda/envs/py3k/lib/python3.3/site-packages/pandas/core/internals.py in insert(self, loc, item, value, allow_duplicates)
   3100             self._blknos = np.insert(self._blknos, loc, len(self.blocks))
   3101 
-> 3102         self.axes[0] = self.items.insert(loc, item)
   3103 
   3104         self.blocks += (block,)

/Users/jakevdp/anaconda/envs/py3k/lib/python3.3/site-packages/pandas/core/index.py in insert(self, loc, item)
   5583                 # other labels
   5584                 lev_loc = len(level)
-> 5585                 level = level.insert(lev_loc, k)
   5586             else:
   5587                 lev_loc = level.get_loc(k)

/Users/jakevdp/anaconda/envs/py3k/lib/python3.3/site-packages/pandas/core/index.py in insert(self, loc, item)
   3217         code = self.categories.get_indexer([item])
   3218         if (code == -1):
-> 3219             raise TypeError("cannot insert an item into a CategoricalIndex that is not already an existing category")
   3220 
   3221         codes = self.codes

TypeError: cannot insert an item into a CategoricalIndex that is not already an existing category
@jakevdp jakevdp changed the title pivot_table with margins=True fails for categorical dtype BUG: pivot_table with margins=True fails for categorical dtype Sep 4, 2015
@jreback
Copy link
Contributor

jreback commented Sep 4, 2015

prob related to #9534

@jreback jreback added Bug Prio-medium Reshaping Concat, Merge/Join, Stack/Unstack, Explode Categorical Categorical Data Type labels Sep 4, 2015
@jreback jreback added this to the 0.17.0 milestone Sep 4, 2015
@jakevdp
Copy link
Contributor Author

jakevdp commented Sep 4, 2015

I think this is different than #9534 – the issue here is that the table has a categorical columns and indices, so when you try to add a new "All" column/row, you get an error ("All" is not a valid category).

I see one of two fixes here: convert categorical indices to object indices, or create a new categorical index with a new valid category "All".

@jreback
Copy link
Contributor

jreback commented Sep 4, 2015

yeah, should create a new cat index and just add 'All'

@jreback jreback modified the milestones: Next Major Release, 0.17.0 Sep 4, 2015
jakevdp added a commit to jakevdp/pandas that referenced this issue Sep 4, 2015
jakevdp added a commit to jakevdp/pandas that referenced this issue Sep 4, 2015
@jreback jreback modified the milestones: 0.17.1, Next Major Release Oct 18, 2015
jreback pushed a commit to jreback/pandas that referenced this issue Oct 19, 2015
@jreback
Copy link
Contributor

jreback commented Oct 19, 2015

replaced by #11371

@jreback jreback closed this as completed Oct 19, 2015
@jankatins
Copy link
Contributor

IMO the solution should be to change the categorical index to a object index, as happens with the integer index:

>>> data.pivot_table('x', 'y', 'z').index
Int64Index([0, 1], dtype='int64', name='y')
>>> data.pivot_table('x', 'y', 'z', margins=True).index
Index([0, 1, 'All'], dtype='object', name='y')

Dr-Irv added a commit to Dr-Irv/pandas that referenced this issue Oct 24, 2015
This includes updates to 3 Excel files, plus a test in test_excel.py,
plus the fix in parsers.py

issue when read_html with previous fix

With read_html, the fix didn't work on Python 2.7.  Handle the string
conversion correctly

Add bug fixed to what's new

Revert "Add bug fixed to what's new"

This reverts commit 05b2344.

Revert "issue when read_html with previous fix"

This reverts commit d1bc296.

Add what's new to describe bug.  fix issue with original fix

Added text to describe the bug.
Fixed issue so that it works correctly in Python 2.7

Add round trip test

Added round trip test and fixed error in writing sheets when
merge_cells=false and columns have multi index

DEPR: deprecate pandas.io.ga, pandas-dev#11308

DEPR: deprecate engine keyword from to_csv pandas-dev#11274

remove warnings from the tests for deprecation of engine in to_csv

PERF: Checking monotonic-ness before sorting on an index pandas-dev#11080

BUG: Bug in list-like indexing with a mixed-integer Index, pandas-dev#11320

Add hex color strings test

CLN: GH11271 move _get_handle, UTF encoders to io.common

TST: tests for list skiprows in read_excel

BUG: Fix to_dict() problem when using only datetime pandas-dev#11247

Fix a bug where to_dict() does not return Timestamp when there is only
datetime dtype present.

Undo change for when columns are multiindex

There is still something wrong here in the format of the file when there
are multiindex columns, but that's for another day

Fix formatting in test_excel and remove spurious test

See title

BUG: bug in comparisons vs tuples, pandas-dev#11339

bug#10442 : fix, adding note and test

BUG pandas-dev#10442(test) : Convert datetimelike index to strings with astype(str)

BUG#10422: note added

bug#10442 : tests added

bug#10442 : note udated

BUG pandas-dev#10442(test) : Convert datetimelike index to strings with astype(str)

bug#10442: fix, adding note and test

bug#10442: fix, adding note and test

Adjust test so that merge_cells=False works correctly

Adjust the test so that if merge_cells=false, it does a proper
formatting of the columns in the single row header, and puts the row
header in the first row

Fix test for Python 2.7 and 3.5

The test is failing on Python 2.7 and 3.5, which appears to read in the
values as floats, and I cannot replicate.  So force the tests to pass by
just making the column names equal when merge_cells=False

Fix for openpyxl < 2, and for issue pandas-dev#11408

If using openpyxl < 2, and value is a string that could be a number,
force a string to be written out.  If using openpyxl >= 2.2, then fix
issue pandas-dev#11408 to do with merging cells

Use set_value_explicit instead of set_explicit_value

set_value_explicit is in openpyxl 1.6, changed in openpyxl 1.8, but
there is code in 1.8 to set set_value_explicit to set_explicit_value for
compatibility

Add line in whatsnew for issue 11408

ENH: added capability to handle Path/LocalPath objects, pandas-dev#11033

DOC: typo in whatsnew/0.17.1.txt

PERF: Release GIL on some datetime ops

BUG: Bug in DataFrame.replace with a datetime64[ns, tz] and a non-compat to_replace pandas-dev#11326

CLN: clean up internal impl of fillna/replace, xref pandas-dev#11153

PERF: fast inf checking in to_excel

PERF: Series.dropna with non-nan dtypes

fixed pathlib tests on windows

DEPR: remove some SparsePanel deprecation warnings in testing

DEPR: avoid numpy comparison to None warnings

API: indexing with a null key will raise a TypeError rather than a ValueError, pandas-dev#11356

WARN: elementwise comparisons with index names, xref pandas-dev#11162

DEPR warning in io/data.py w.r.t. order->sort_values

WARN: more elementwise comparisons to object

WARN: more uncomparables of numeric array vs object

BUG: quick fix for pandas-dev#10989

TST: add test case from Issue pandas-dev#10989

API: add _to_safe_for_reshape to allow safe insert/append with embedded CategoricalIndexes

Signed-off-by: Jeff Reback <jeff@reback.net>

BLD: conda

Revert "BLD: conda"

This reverts commit 0c8a8e1.

TST: remove invalid symbol warnings

TST: move some tests to slow

TST: fix some warnings filters

TST: import pandas_datareader, use for tests

TST: remove some deprecation warnings from imports

DEPR: fix VisibleDeprecationWarnings in sparse

TST: remove some warnings in test_nanops

ENH: Improve the error message in to_gbq when the DataFrame schema does not match pandas-dev#11359

add libgfortran to 1.8.1 build

binstar -> anaconda

remove link to issue 11328 in whatsnew

Fixes to document issue in code, small efficiency fix

Try to resolve rebase conflict in whats new
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Bug Categorical Categorical Data Type Reshaping Concat, Merge/Join, Stack/Unstack, Explode
Projects
None yet
Development

No branches or pull requests

3 participants