@@ -2028,7 +2028,7 @@ def all(self, skipna: bool = True):
20282028
20292029 @final
20302030 @Substitution (name = "groupby" )
2031- @Appender ( _common_see_also )
2031+ @Substitution ( see_also = _common_see_also )
20322032 def count (self ) -> NDFrameT :
20332033 """
20342034 Compute count of group, excluding missing values.
@@ -2037,6 +2037,38 @@ def count(self) -> NDFrameT:
20372037 -------
20382038 Series or DataFrame
20392039 Count of values within each group.
2040+ %(see_also)s
2041+ Examples
2042+ --------
2043+ For SeriesGroupBy:
2044+
2045+ >>> lst = ['a', 'a', 'b']
2046+ >>> ser = pd.Series([1, 2, np.nan], index=lst)
2047+ >>> ser
2048+ a 1.0
2049+ a 2.0
2050+ b NaN
2051+ dtype: float64
2052+ >>> ser.groupby(level=0).count()
2053+ a 2
2054+ b 0
2055+ dtype: int64
2056+
2057+ For DataFrameGroupBy:
2058+
2059+ >>> data = [[1, np.nan, 3], [1, np.nan, 6], [7, 8, 9]]
2060+ >>> df = pd.DataFrame(data, columns=["a", "b", "c"],
2061+ ... index=["cow", "horse", "bull"])
2062+ >>> df
2063+ a b c
2064+ cow 1 NaN 3
2065+ horse 1 NaN 6
2066+ bull 7 8.0 9
2067+ >>> df.groupby("a").count()
2068+ b c
2069+ a
2070+ 1 0 2
2071+ 7 1 1
20402072 """
20412073 data = self ._get_data_to_aggregate ()
20422074 ids , _ , ngroups = self .grouper .group_info
@@ -3890,7 +3922,7 @@ def rank(
38903922
38913923 @final
38923924 @Substitution (name = "groupby" )
3893- @Appender ( _common_see_also )
3925+ @Substitution ( see_also = _common_see_also )
38943926 def cumprod (
38953927 self , axis : Axis | lib .NoDefault = lib .no_default , * args , ** kwargs
38963928 ) -> NDFrameT :
@@ -3900,6 +3932,41 @@ def cumprod(
39003932 Returns
39013933 -------
39023934 Series or DataFrame
3935+ %(see_also)s
3936+ Examples
3937+ --------
3938+ For SeriesGroupBy:
3939+
3940+ >>> lst = ['a', 'a', 'b']
3941+ >>> ser = pd.Series([6, 2, 0], index=lst)
3942+ >>> ser
3943+ a 6
3944+ a 2
3945+ b 0
3946+ dtype: int64
3947+ >>> ser.groupby(level=0).cumprod()
3948+ a 6
3949+ a 12
3950+ b 0
3951+ dtype: int64
3952+
3953+ For DataFrameGroupBy:
3954+
3955+ >>> data = [[1, 8, 2], [1, 2, 5], [2, 6, 9]]
3956+ >>> df = pd.DataFrame(data, columns=["a", "b", "c"],
3957+ ... index=["cow", "horse", "bull"])
3958+ >>> df
3959+ a b c
3960+ cow 1 8 2
3961+ horse 1 2 5
3962+ bull 2 6 9
3963+ >>> df.groupby("a").groups
3964+ {1: ['cow', 'horse'], 2: ['bull']}
3965+ >>> df.groupby("a").cumprod()
3966+ b c
3967+ cow 8 2
3968+ horse 16 10
3969+ bull 6 9
39033970 """
39043971 nv .validate_groupby_func ("cumprod" , args , kwargs , ["numeric_only" , "skipna" ])
39053972 if axis is not lib .no_default :
@@ -3916,7 +3983,7 @@ def cumprod(
39163983
39173984 @final
39183985 @Substitution (name = "groupby" )
3919- @Appender ( _common_see_also )
3986+ @Substitution ( see_also = _common_see_also )
39203987 def cumsum (
39213988 self , axis : Axis | lib .NoDefault = lib .no_default , * args , ** kwargs
39223989 ) -> NDFrameT :
@@ -3926,6 +3993,41 @@ def cumsum(
39263993 Returns
39273994 -------
39283995 Series or DataFrame
3996+ %(see_also)s
3997+ Examples
3998+ --------
3999+ For SeriesGroupBy:
4000+
4001+ >>> lst = ['a', 'a', 'b']
4002+ >>> ser = pd.Series([6, 2, 0], index=lst)
4003+ >>> ser
4004+ a 6
4005+ a 2
4006+ b 0
4007+ dtype: int64
4008+ >>> ser.groupby(level=0).cumsum()
4009+ a 6
4010+ a 8
4011+ b 0
4012+ dtype: int64
4013+
4014+ For DataFrameGroupBy:
4015+
4016+ >>> data = [[1, 8, 2], [1, 2, 5], [2, 6, 9]]
4017+ >>> df = pd.DataFrame(data, columns=["a", "b", "c"],
4018+ ... index=["fox", "gorilla", "lion"])
4019+ >>> df
4020+ a b c
4021+ fox 1 8 2
4022+ gorilla 1 2 5
4023+ lion 2 6 9
4024+ >>> df.groupby("a").groups
4025+ {1: ['fox', 'gorilla'], 2: ['lion']}
4026+ >>> df.groupby("a").cumsum()
4027+ b c
4028+ fox 8 2
4029+ gorilla 10 7
4030+ lion 6 9
39294031 """
39304032 nv .validate_groupby_func ("cumsum" , args , kwargs , ["numeric_only" , "skipna" ])
39314033 if axis is not lib .no_default :
@@ -3942,7 +4044,7 @@ def cumsum(
39424044
39434045 @final
39444046 @Substitution (name = "groupby" )
3945- @Appender ( _common_see_also )
4047+ @Substitution ( see_also = _common_see_also )
39464048 def cummin (
39474049 self ,
39484050 axis : AxisInt | lib .NoDefault = lib .no_default ,
@@ -3955,6 +4057,47 @@ def cummin(
39554057 Returns
39564058 -------
39574059 Series or DataFrame
4060+ %(see_also)s
4061+ Examples
4062+ --------
4063+ For SeriesGroupBy:
4064+
4065+ >>> lst = ['a', 'a', 'a', 'b', 'b', 'b']
4066+ >>> ser = pd.Series([1, 6, 2, 3, 0, 4], index=lst)
4067+ >>> ser
4068+ a 1
4069+ a 6
4070+ a 2
4071+ b 3
4072+ b 0
4073+ b 4
4074+ dtype: int64
4075+ >>> ser.groupby(level=0).cummin()
4076+ a 1
4077+ a 1
4078+ a 1
4079+ b 3
4080+ b 0
4081+ b 0
4082+ dtype: int64
4083+
4084+ For DataFrameGroupBy:
4085+
4086+ >>> data = [[1, 0, 2], [1, 1, 5], [6, 6, 9]]
4087+ >>> df = pd.DataFrame(data, columns=["a", "b", "c"],
4088+ ... index=["snake", "rabbit", "turtle"])
4089+ >>> df
4090+ a b c
4091+ snake 1 0 2
4092+ rabbit 1 1 5
4093+ turtle 6 6 9
4094+ >>> df.groupby("a").groups
4095+ {1: ['snake', 'rabbit'], 6: ['turtle']}
4096+ >>> df.groupby("a").cummin()
4097+ b c
4098+ snake 0 2
4099+ rabbit 0 2
4100+ turtle 6 9
39584101 """
39594102 skipna = kwargs .get ("skipna" , True )
39604103 if axis is not lib .no_default :
@@ -3976,7 +4119,7 @@ def cummin(
39764119
39774120 @final
39784121 @Substitution (name = "groupby" )
3979- @Appender ( _common_see_also )
4122+ @Substitution ( see_also = _common_see_also )
39804123 def cummax (
39814124 self ,
39824125 axis : AxisInt | lib .NoDefault = lib .no_default ,
@@ -3989,6 +4132,47 @@ def cummax(
39894132 Returns
39904133 -------
39914134 Series or DataFrame
4135+ %(see_also)s
4136+ Examples
4137+ --------
4138+ For SeriesGroupBy:
4139+
4140+ >>> lst = ['a', 'a', 'a', 'b', 'b', 'b']
4141+ >>> ser = pd.Series([1, 6, 2, 3, 1, 4], index=lst)
4142+ >>> ser
4143+ a 1
4144+ a 6
4145+ a 2
4146+ b 3
4147+ b 1
4148+ b 4
4149+ dtype: int64
4150+ >>> ser.groupby(level=0).cummax()
4151+ a 1
4152+ a 6
4153+ a 6
4154+ b 3
4155+ b 3
4156+ b 4
4157+ dtype: int64
4158+
4159+ For DataFrameGroupBy:
4160+
4161+ >>> data = [[1, 8, 2], [1, 1, 0], [2, 6, 9]]
4162+ >>> df = pd.DataFrame(data, columns=["a", "b", "c"],
4163+ ... index=["cow", "horse", "bull"])
4164+ >>> df
4165+ a b c
4166+ cow 1 8 2
4167+ horse 1 1 0
4168+ bull 2 6 9
4169+ >>> df.groupby("a").groups
4170+ {1: ['cow', 'horse'], 2: ['bull']}
4171+ >>> df.groupby("a").cummax()
4172+ b c
4173+ cow 8 2
4174+ horse 8 2
4175+ bull 6 9
39924176 """
39934177 skipna = kwargs .get ("skipna" , True )
39944178 if axis is not lib .no_default :
0 commit comments