Skip to content

Commit

Permalink
NDFrame.astype doc string, some further cleanup
Browse files Browse the repository at this point in the history
  • Loading branch information
tp committed Aug 9, 2017
1 parent 43e2760 commit c90160a
Showing 1 changed file with 15 additions and 14 deletions.
29 changes: 15 additions & 14 deletions pandas/core/generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -3610,7 +3610,7 @@ def blocks(self):
mapping={True: 'raise', False: 'ignore'})
def astype(self, dtype, copy=True, errors='raise', **kwargs):
"""
Cast a pandas object to new dtype ``dtype``.
Cast a pandas object to a specified dtype ``dtype``.
Parameters
----------
Expand All @@ -3620,7 +3620,9 @@ def astype(self, dtype, copy=True, errors='raise', **kwargs):
column label and dtype is a numpy.dtype or Python type to cast one
or more of the DataFrame's columns to column-specific types.
copy : bool, default True.
Return a copy when ``copy=True`` (be really careful with this!).
Return a copy when ``copy=True`` (be very careful setting
``copy=False`` as changes to values then may propagate to other
pandas objects).
errors : {'raise', 'ignore'}, default 'raise'.
Control raising of exceptions on invalid data for provided dtype.
Expand Down Expand Up @@ -3650,15 +3652,15 @@ def astype(self, dtype, copy=True, errors='raise', **kwargs):
1 2
dtype: int64
Convert to pd.Categorial:
Convert to categorical type:
>>> ser.astype('category')
0 1
1 2
dtype: category
Categories (2, int64): [1, 2]
Convert to ordered pd.Categorial with custom ordering:
Convert to ordered categorical type with custom ordering:
>>> ser.astype('category', ordered=True, categories=[2, 1])
0 1
Expand All @@ -3667,16 +3669,15 @@ def astype(self, dtype, copy=True, errors='raise', **kwargs):
Categories (2, int64): [2 < 1]
Note that using ``copy=False`` and changing data on a new
pandas object may propagate changes upwards:
>>> cat1 = pd.Series([1,2], dtype='category')
>>> cat2 = cat1.astype('category', copy=False)
>>> cat2[0] = 2
>>> cat1 # note that cat1[0] is changed too
0 2
1 2
dtype: category
Categories (2, int64): [1, 2]
pandas object may propagate changes:
>>> s1 = pd.Series([1,2])
>>> s2 = s1.astype('int', copy=False)
>>> s2[0] = 10
>>> s1 # note that s1[0] has changed too
0 10
1 2
dtype: int64
See also
--------
Expand Down

0 comments on commit c90160a

Please sign in to comment.