Skip to content

Commit

Permalink
BUG: crosstab(dropna=False) did not keep np.nan in result (#53205)
Browse files Browse the repository at this point in the history
  • Loading branch information
mroeschke authored May 14, 2023
1 parent 1771b0f commit 3cfd868
Show file tree
Hide file tree
Showing 4 changed files with 39 additions and 13 deletions.
1 change: 1 addition & 0 deletions doc/source/whatsnew/v2.1.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -421,6 +421,7 @@ Groupby/resample/rolling

Reshaping
^^^^^^^^^
- Bug in :func:`crosstab` when ``dropna=False`` would not keep ``np.nan`` in the result (:issue:`10772`)
- Bug in :meth:`DataFrame.agg` and :meth:`Series.agg` on non-unique columns would return incorrect type when dist-like argument passed in (:issue:`51099`)
- Bug in :meth:`DataFrame.stack` losing extension dtypes when columns is a :class:`MultiIndex` and frame contains mixed dtypes (:issue:`45740`)
- Bug in :meth:`DataFrame.transpose` inferring dtype for object column (:issue:`51546`)
Expand Down
2 changes: 1 addition & 1 deletion pandas/core/reshape/pivot.py
Original file line number Diff line number Diff line change
Expand Up @@ -164,7 +164,7 @@ def __internal_pivot_table(
pass
values = list(values)

grouped = data.groupby(keys, observed=observed, sort=sort)
grouped = data.groupby(keys, observed=observed, sort=sort, dropna=dropna)
agged = grouped.agg(aggfunc)

if dropna and isinstance(agged, ABCDataFrame) and len(agged.columns):
Expand Down
38 changes: 28 additions & 10 deletions pandas/tests/reshape/test_crosstab.py
Original file line number Diff line number Diff line change
Expand Up @@ -286,24 +286,29 @@ def test_margin_dropna4(self):
# GH 12642
# _add_margins raises KeyError: Level None not found
# when margins=True and dropna=False
# GH: 10772: Keep np.nan in result with dropna=False
df = DataFrame({"a": [1, 2, 2, 2, 2, np.nan], "b": [3, 3, 4, 4, 4, 4]})
actual = crosstab(df.a, df.b, margins=True, dropna=False)
expected = DataFrame([[1, 0, 1], [1, 3, 4], [2, 4, 6]])
expected.index = Index([1.0, 2.0, "All"], name="a")
expected = DataFrame([[1, 0, 1.0], [1, 3, 4.0], [0, 1, np.nan], [2, 4, 6.0]])
expected.index = Index([1.0, 2.0, np.nan, "All"], name="a")
expected.columns = Index([3, 4, "All"], name="b")
tm.assert_frame_equal(actual, expected)

def test_margin_dropna5(self):
# GH: 10772: Keep np.nan in result with dropna=False
df = DataFrame(
{"a": [1, np.nan, np.nan, np.nan, 2, np.nan], "b": [3, np.nan, 4, 4, 4, 4]}
)
actual = crosstab(df.a, df.b, margins=True, dropna=False)
expected = DataFrame([[1, 0, 1], [0, 1, 1], [1, 4, 6]])
expected.index = Index([1.0, 2.0, "All"], name="a")
expected.columns = Index([3.0, 4.0, "All"], name="b")
expected = DataFrame(
[[1, 0, 0, 1.0], [0, 1, 0, 1.0], [0, 3, 1, np.nan], [1, 4, 0, 6.0]]
)
expected.index = Index([1.0, 2.0, np.nan, "All"], name="a")
expected.columns = Index([3.0, 4.0, np.nan, "All"], name="b")
tm.assert_frame_equal(actual, expected)

def test_margin_dropna6(self):
# GH: 10772: Keep np.nan in result with dropna=False
a = np.array(["foo", "foo", "foo", "bar", "bar", "foo", "foo"], dtype=object)
b = np.array(["one", "one", "two", "one", "two", np.nan, "two"], dtype=object)
c = np.array(
Expand All @@ -315,13 +320,14 @@ def test_margin_dropna6(self):
)
m = MultiIndex.from_arrays(
[
["one", "one", "two", "two", "All"],
["dull", "shiny", "dull", "shiny", ""],
["one", "one", "two", "two", np.nan, np.nan, "All"],
["dull", "shiny", "dull", "shiny", "dull", "shiny", ""],
],
names=["b", "c"],
)
expected = DataFrame(
[[1, 0, 1, 0, 2], [2, 0, 1, 1, 5], [3, 0, 2, 1, 7]], columns=m
[[1, 0, 1, 0, 0, 0, 2], [2, 0, 1, 1, 0, 1, 5], [3, 0, 2, 1, 0, 0, 7]],
columns=m,
)
expected.index = Index(["bar", "foo", "All"], name="a")
tm.assert_frame_equal(actual, expected)
Expand All @@ -330,11 +336,23 @@ def test_margin_dropna6(self):
[a, b], c, rownames=["a", "b"], colnames=["c"], margins=True, dropna=False
)
m = MultiIndex.from_arrays(
[["bar", "bar", "foo", "foo", "All"], ["one", "two", "one", "two", ""]],
[
["bar", "bar", "bar", "foo", "foo", "foo", "All"],
["one", "two", np.nan, "one", "two", np.nan, ""],
],
names=["a", "b"],
)
expected = DataFrame(
[[1, 0, 1], [1, 0, 1], [2, 0, 2], [1, 1, 2], [5, 2, 7]], index=m
[
[1, 0, 1.0],
[1, 0, 1.0],
[0, 0, np.nan],
[2, 0, 2.0],
[1, 1, 2.0],
[0, 1, np.nan],
[5, 2, 7.0],
],
index=m,
)
expected.columns = Index(["dull", "shiny", "All"], name="c")
tm.assert_frame_equal(actual, expected)
Expand Down
11 changes: 9 additions & 2 deletions pandas/tests/reshape/test_pivot.py
Original file line number Diff line number Diff line change
Expand Up @@ -248,11 +248,18 @@ def test_pivot_with_non_observable_dropna(self, dropna):
)

result = df.pivot_table(index="A", values="B", dropna=dropna)
if dropna:
values = [2.0, 3.0]
codes = [0, 1]
else:
# GH: 10772
values = [2.0, 3.0, 0.0]
codes = [0, 1, -1]
expected = DataFrame(
{"B": [2.0, 3.0]},
{"B": values},
index=Index(
Categorical.from_codes(
[0, 1], categories=["low", "high"], ordered=True
codes, categories=["low", "high"], ordered=dropna
),
name="A",
),
Expand Down

0 comments on commit 3cfd868

Please sign in to comment.