-
-
Notifications
You must be signed in to change notification settings - Fork 17.9k
/
test_to_xarray.py
130 lines (108 loc) · 4.13 KB
/
test_to_xarray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import numpy as np
import pytest
from pandas import (
Categorical,
DataFrame,
MultiIndex,
Series,
date_range,
)
import pandas._testing as tm
pytest.importorskip("xarray")
class TestDataFrameToXArray:
@pytest.fixture
def df(self):
return DataFrame(
{
"a": list("abcd"),
"b": list(range(1, 5)),
"c": np.arange(3, 7).astype("u1"),
"d": np.arange(4.0, 8.0, dtype="float64"),
"e": [True, False, True, False],
"f": Categorical(list("abcd")),
"g": date_range("20130101", periods=4),
"h": date_range("20130101", periods=4, tz="US/Eastern"),
}
)
def test_to_xarray_index_types(self, index_flat, df, using_infer_string):
index = index_flat
# MultiIndex is tested in test_to_xarray_with_multiindex
if len(index) == 0:
pytest.skip("Test doesn't make sense for empty index")
from xarray import Dataset
df.index = index[:4]
df.index.name = "foo"
df.columns.name = "bar"
result = df.to_xarray()
assert result.sizes["foo"] == 4
assert len(result.coords) == 1
assert len(result.data_vars) == 8
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
assert isinstance(result, Dataset)
# idempotency
# datetimes w/tz are preserved
# column names are lost
expected = df.copy()
expected["f"] = expected["f"].astype(
object if not using_infer_string else "str"
)
expected.columns.name = None
tm.assert_frame_equal(result.to_dataframe(), expected)
def test_to_xarray_empty(self, df):
from xarray import Dataset
df.index.name = "foo"
result = df[0:0].to_xarray()
assert result.sizes["foo"] == 0
assert isinstance(result, Dataset)
def test_to_xarray_with_multiindex(self, df, using_infer_string):
from xarray import Dataset
# MultiIndex
df.index = MultiIndex.from_product([["a"], range(4)], names=["one", "two"])
result = df.to_xarray()
assert result.sizes["one"] == 1
assert result.sizes["two"] == 4
assert len(result.coords) == 2
assert len(result.data_vars) == 8
tm.assert_almost_equal(list(result.coords.keys()), ["one", "two"])
assert isinstance(result, Dataset)
result = result.to_dataframe()
expected = df.copy()
expected["f"] = expected["f"].astype(
object if not using_infer_string else "str"
)
expected.columns.name = None
tm.assert_frame_equal(result, expected)
class TestSeriesToXArray:
def test_to_xarray_index_types(self, index_flat):
index = index_flat
# MultiIndex is tested in test_to_xarray_with_multiindex
from xarray import DataArray
ser = Series(range(len(index)), index=index, dtype="int64")
ser.index.name = "foo"
result = ser.to_xarray()
repr(result)
assert len(result) == len(index)
assert len(result.coords) == 1
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
assert isinstance(result, DataArray)
# idempotency
tm.assert_series_equal(result.to_series(), ser)
def test_to_xarray_empty(self):
from xarray import DataArray
ser = Series([], dtype=object)
ser.index.name = "foo"
result = ser.to_xarray()
assert len(result) == 0
assert len(result.coords) == 1
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
assert isinstance(result, DataArray)
def test_to_xarray_with_multiindex(self):
from xarray import DataArray
mi = MultiIndex.from_product([["a", "b"], range(3)], names=["one", "two"])
ser = Series(range(6), dtype="int64", index=mi)
result = ser.to_xarray()
assert len(result) == 2
tm.assert_almost_equal(list(result.coords.keys()), ["one", "two"])
assert isinstance(result, DataArray)
res = result.to_series()
tm.assert_series_equal(res, ser)