forked from aounon/certified-llm-safety
-
Notifications
You must be signed in to change notification settings - Fork 0
/
distil_bert_toxic_classifier.py
314 lines (223 loc) · 9.43 KB
/
distil_bert_toxic_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import re
import warnings
import pandas as pd
import numpy as np
from transformers import AutoModelForSequenceClassification, AutoTokenizer, TextClassificationPipeline
warnings.filterwarnings("ignore")
import torch
import torch.nn as nn
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
import transformers
from transformers import RobertaTokenizer, RobertaForSequenceClassification
# specify GPU
# device = 'cpu' # torch.device("cuda")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def read_text(filename):
string = []
with open(filename, "r") as f:
full_text = f.read()
for l in re.split(r"\n", full_text):
string.append(l)
return pd.DataFrame(string)
seed = 912
safe_prompt_train = read_text("../data/safe_prompts_train_insertion_erased.txt")
harm_prompt_train = read_text("../data/harmful_prompts_train.txt")
# safe_prompt_train = read_text("../data/safe_prompts_train.txt")
# harm_prompt_train = read_text("../data/harmful_prompts_train.txt")
prompt_data_train = pd.concat([safe_prompt_train, harm_prompt_train], ignore_index=True)
prompt_data_train['Y'] = pd.Series(np.concatenate([np.ones(safe_prompt_train.shape[0]), np.zeros(harm_prompt_train.shape[0])])).astype(int)
safe_prompt_test = read_text("../data/safe_prompts_test_insertion_erased.txt")
harm_prompt_test = read_text("../data/harmful_prompts_test.txt")
# safe_prompt_test = read_text("../data/safe_prompts_test.txt")
# harm_prompt_test = read_text("../data/harmful_prompts_test.txt")
prompt_data_test = pd.concat([safe_prompt_test, harm_prompt_test], ignore_index=True)
prompt_data_test['Y'] = pd.Series(np.concatenate([np.ones(safe_prompt_test.shape[0]), np.zeros(harm_prompt_test.shape[0])])).astype(int)
# split train dataset into train, validation and test sets
train_text, val_text, train_labels, val_labels = train_test_split(prompt_data_train[0],
prompt_data_train['Y'],
random_state=seed,
test_size=0.2,
stratify=prompt_data_train['Y'])
test_text = prompt_data_test[0]
test_labels = prompt_data_test['Y']
#val_text, test_text, val_labels, test_labels = train_test_split(temp_text, temp_labels,
# random_state=seed,
# test_size=0.5,
# stratify=temp_labels)
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
# Load the tokenizer
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
# pass the pre-trained DistilBert to our define architecture
model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
# tokenize and encode sequences in the training set
tokens_train = tokenizer.batch_encode_plus(
train_text.tolist(),
max_length = 25,
pad_to_max_length=True,
truncation=True
)
# tokenize and encode sequences in the validation set
tokens_val = tokenizer.batch_encode_plus(
val_text.tolist(),
max_length = 25,
pad_to_max_length=True,
truncation=True
)
# tokenize and encode sequences in the test set
tokens_test = tokenizer.batch_encode_plus(
test_text.tolist(),
max_length = 25,
pad_to_max_length=True,
truncation=True
)
## convert lists to tensors
train_seq = torch.tensor(tokens_train['input_ids'])
train_mask = torch.tensor(tokens_train['attention_mask'])
train_y = torch.tensor(train_labels.tolist())
# import pdb; pdb.set_trace()
val_seq = torch.tensor(tokens_val['input_ids'])
val_mask = torch.tensor(tokens_val['attention_mask'])
val_y = torch.tensor(val_labels.tolist())
test_seq = torch.tensor(tokens_test['input_ids'])
test_mask = torch.tensor(tokens_test['attention_mask'])
test_y = torch.tensor(test_labels.tolist())
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
#define a batch size
batch_size = 32
# wrap tensors
train_data = TensorDataset(train_seq, train_mask, train_y)
# sampler for sampling the data during training
train_sampler = RandomSampler(train_data)
# dataLoader for train set
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=batch_size)
# wrap tensors
val_data = TensorDataset(val_seq, val_mask, val_y)
# sampler for sampling the data during training
val_sampler = SequentialSampler(val_data)
# dataLoader for validation set
val_dataloader = DataLoader(val_data, sampler = val_sampler, batch_size=batch_size)
# push the model to GPU
model = model.to(device)
# optimizer from hugging face transformers
from transformers import AdamW
# define the optimizer
optimizer = AdamW(model.parameters(), lr = 1e-5) # learning rate
from sklearn.utils.class_weight import compute_class_weight
#compute the class weights
class_weights = compute_class_weight(class_weight = 'balanced', classes = np.unique(train_labels), y = train_labels.to_numpy())
print("Class Weights:",class_weights)
# converting list of class weights to a tensor
weights= torch.tensor(class_weights,dtype=torch.float)
# push to GPU
weights = weights.to(device)
# define the loss function
cross_entropy = nn.NLLLoss(weight=weights)
# number of training epochs
epochs = 5
# function to train the model
def train():
model.train()
total_loss, total_accuracy = 0, 0
# empty list to save model predictions
total_preds=[]
# iterate over batches
for step, batch in enumerate(train_dataloader):
# progress update after every 50 batches.
if step % 50 == 0 and not step == 0:
print(' Batch {:>5,} of {:>5,}.'.format(step, len(train_dataloader)))
# push the batch to gpu
batch = [r.to(device) for r in batch]
sent_id, mask, labels = batch
# clear previously calculated gradients
model.zero_grad()
# get model predictions for the current batch
preds = model(sent_id, mask)[0]
# compute the loss between actual and predicted values
loss = cross_entropy(preds, labels)
# add on to the total loss
total_loss = total_loss + loss.item()
# backward pass to calculate the gradients
loss.backward()
# clip the the gradients to 1.0. It helps in preventing the exploding gradient problem
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
# update parameters
optimizer.step()
# model predictions are stored on GPU. So, push it to CPU
preds=preds.detach().cpu().numpy()
# append the model predictions
total_preds.append(preds)
# compute the training loss of the epoch
avg_loss = total_loss / len(train_dataloader)
# predictions are in the form of (no. of batches, size of batch, no. of classes).
# reshape the predictions in form of (number of samples, no. of classes)
total_preds = np.concatenate(total_preds, axis=0)
#returns the loss and predictions
return avg_loss, total_preds
# function for evaluating the model
def evaluate():
print("\nEvaluating...")
# deactivate dropout layers
model.eval()
total_loss, total_accuracy = 0, 0
# empty list to save the model predictions
total_preds = []
# iterate over batches
for step,batch in enumerate(val_dataloader):
# Progress update every 50 batches.
if step % 50 == 0 and not step == 0:
# Calculate elapsed time in minutes.
# elapsed = format_time(time.time() - t0)
# Report progress.
print(' Batch {:>5,} of {:>5,}.'.format(step, len(val_dataloader)))
# push the batch to gpu
batch = [t.to(device) for t in batch]
sent_id, mask, labels = batch
# deactivate autograd
with torch.no_grad():
# model predictions
preds = model(sent_id, mask)[0]
# compute the validation loss between actual and predicted values
loss = cross_entropy(preds, labels)
total_loss = total_loss + loss.item()
preds = preds.detach().cpu().numpy()
total_preds.append(preds)
# compute the validation loss of the epoch
avg_loss = total_loss / len(val_dataloader)
# reshape the predictions in form of (number of samples, no. of classes)
total_preds = np.concatenate(total_preds, axis=0)
return avg_loss, total_preds
# set initial loss to infinite
best_valid_loss = float('inf')
# empty lists to store training and validation loss of each epoch
train_losses=[]
valid_losses=[]
train_flag = True
if train_flag == True:
# for each epoch
for epoch in range(epochs):
print('\n Epoch {:} / {:}'.format(epoch + 1, epochs))
#train model
train_loss, _ = train()
#evaluate model
valid_loss, _ = evaluate()
#save the best model
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), 'new_distillbert_saved_weights.pt')
# append training and validation loss
train_losses.append(train_loss)
valid_losses.append(valid_loss)
print(f'\nTraining Loss: {train_loss:.3f}')
print(f'Validation Loss: {valid_loss:.3f}')
#load weights of best model
path = 'new_distillbert_saved_weights.pt'
model.load_state_dict(torch.load(path))
model.eval()
# get predictions for test data
with torch.no_grad():
preds = model(test_seq.to(device), test_mask.to(device))[0]
preds = preds.detach().cpu().numpy()
preds = np.argmax(preds, axis = 1)
print(f'Testing Accuracy = {100*torch.sum(torch.tensor(preds) == test_y)/test_y.shape[0]}%')
print(classification_report(test_y, preds))