You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Traceback (most recent call last):
File "/home/ats4i/Desktop/corona/dataAndModelsCovid19/dataFit_SEAIRD_v2YaboxEvolutionaryParams.py", line 1036, in <module>
main(countriesExt)
File "/home/ats4i/Desktop/corona/dataAndModelsCovid19/dataFit_SEAIRD_v2YaboxEvolutionaryParams.py", line 660, in main
results = ray.get(results)
File "/home/ats4i/anaconda3/lib/python3.7/site-packages/ray/worker.py", line 2349, in get
raise value
ray.exceptions.RayTaskError: ray_Learner:train() (pid=117047, host=jedha)
File "/home/ats4i/Desktop/corona/dataAndModelsCovid19/dataFit_SEAIRD_v2YaboxEvolutionaryParams.py", line 337, in train
for step in de.geniterator():
File "/home/ats4i/anaconda3/lib/python3.7/site-packages/yabox/algorithms/de.py", line 172, in geniterator
for step in it:
File "/home/ats4i/anaconda3/lib/python3.7/site-packages/yabox/algorithms/de.py", line 203, in iterator
it = PDEIterator(self)
File "/home/ats4i/anaconda3/lib/python3.7/site-packages/yabox/algorithms/de.py", line 70, in __init__
super().__init__(de)
File "/home/ats4i/anaconda3/lib/python3.7/site-packages/yabox/algorithms/de.py", line 9, in __init__
self.fitness = de.evaluate(self.population)
File "/home/ats4i/anaconda3/lib/python3.7/site-packages/yabox/algorithms/de.py", line 161, in evaluate
return self.evaluate_denormalized(PD)
File "/home/ats4i/anaconda3/lib/python3.7/site-packages/yabox/algorithms/de.py", line 213, in evaluate_denormalized
return list(self.pool.map(self.fobj, PD, chunksize=self.chunksize))
File "/home/ats4i/anaconda3/lib/python3.7/multiprocessing/pool.py", line 268, in map
return self._map_async(func, iterable, mapstar, chunksize).get()
File "/home/ats4i/anaconda3/lib/python3.7/multiprocessing/pool.py", line 657, in get
raise self._value
File "/home/ats4i/anaconda3/lib/python3.7/multiprocessing/pool.py", line 431, in _handle_tasks
put(task)
File "/home/ats4i/anaconda3/lib/python3.7/multiprocessing/connection.py", line 206, in send
self._send_bytes(_ForkingPickler.dumps(obj))
File "/home/ats4i/anaconda3/lib/python3.7/multiprocessing/reduction.py", line 51, in dumps
cls(buf, protocol).dump(obj)
the function to be minimized
def create_lossOdeint(data, recovered, \
death, s_0, e_0, a_0, i_0, r_0, d_0, startNCases, \
weigthCases, weigthRecov):
def lossOdeint(point):
size = len(data)
beta, beta2, sigma, sigma2, sigma3, gamma, b, mu = point
def SEAIRD(y,t):
S = y[0]
E = y[1]
A = y[2]
I = y[3]
R = y[4]
p=0.2
# beta2=beta
y0=-(beta2*A+beta*I)*S+mu*S #S
y1=(beta2*A+beta*I)*S-sigma*E-mu*E #E
y2=sigma*E*(1-p)-gamma*A-mu*A #A
y3=sigma*E*p-gamma*I-sigma2*I-sigma3*I-mu*I #I
y4=b*I+gamma*A+sigma2*I-mu*R #R
y5=(-(y0+y1+y2+y3+y4)) #D
return [y0,y1,y2,y3,y4,y5]
y0=[s_0,e_0,a_0,i_0,r_0,d_0]
tspan=np.arange(0, size, 1)
res=odeint(SEAIRD,y0,tspan)
#,hmax=0.01)
tot=0
l1=0
l2=0
l3=0
for i in range(0,len(data.values)):
if data.values[i]>startNCases:
l1 = l1+(res[i,3] - data.values[i])**2
l2 = l2+(res[i,5] - death.values[i])**2
l3 = l3+(res[i,4] - recovered.values[i])**2
tot+=1
l1=np.sqrt(l1/max(1,tot))
l2=np.sqrt(l2/max(1,tot))
l3=np.sqrt(l3/max(1,tot))
#weight for cases
u = weigthCases
#weight for recovered
w = weigthRecov
#weight for deaths
v = max(0,1. - u - w)
return u*l1 + v*l2 + w*l3
return lossOdeint
I got this error when trying to use PDE
the function to be minimized
the call to minimizer
The text was updated successfully, but these errors were encountered: