-
Notifications
You must be signed in to change notification settings - Fork 0
/
NaturalUnits.tex
814 lines (812 loc) · 89.7 KB
/
NaturalUnits.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
{\large This document uses natural units, where $\epsilon_0 = 1$ and $G=\frac1{2\tau}$. These are rationalized Planck units.}
\chapter{Base 6 - Rationalized Planck units}
\section{Only Exponents That End With Zero will be used and displayed as Divided By Base In Lojban Numbering}\begin{longtable}{l l}
\caption*{Interesting variables for comparison:}\\
$\textrm{Proton mass} = 1.14250\cdot10^{-40} $&
$1\:\text{ni'uvo-} M=10^{-40} = 0.435155\,m_p$\quad(*)\\
$\textrm{Electron mass} = 52.4450\cdot10^{-50} $&
$1\:\text{ni'umu-} M=10^{-50} = 0.0103302\,m_e$\\
$\textrm{Elementary charge} = 0.145224\cdot10^{0} $&
$1\:\text{} Q=1 = 3.14514\,e$\\
$\si\angstrom\,$\footnote{Length in atomic and solid state physics, 1/14 nm}$ = 11.5212\cdot10^{50} $&
$1\:\text{mu-} L=10^{50} = 0.0432054\,\si\angstrom$\\
$\textrm{Bohr radius}\,$\footnote{Characteristic Length in the hydrogen atom. $a_0 = \frac1{m_\mathrm{e}\alpha}$}$ = 4.10223\cdot10^{50} $&
$1\:\text{mu-} L=10^{50} = 0.123412\,a_0$\\
$\textrm{Fine structure constant}\,$\footnote{Fundamental constant describing strength of electromagnetism. $\alpha=k_\mathrm{Coulomb}e^2$}$ = 0.00132425\cdot10^{0} $&
$1\:\text{} =1 = 345.012\,\alpha$\\
$\textrm{Rydberg Energy}\,$\footnote{Ry $=\frac{m_\mathrm{e}\alpha^2}2$. Lowest energy state in hydrogen is -Ry}$ = 104.425\cdot10^{-100} $&
$1\:\text{ni'upano-} \frac{ML^2}{T^2}=10^{-100} = 0.00514501\,Ry$\\
$|\psi_{100}(0)|^2\,$\footnote{Maximum probability density of electron in hydrogen - at the core. $\frac1{\pi a_0^3}$}$ = 535.355\cdot10^{-240} $\quad(*)&
$1\:\text{ni'urevo-} \frac1{L^3}=10^{-240} = 0.00102103\,\rho_{\operatorname{max}}$\\
$\si\eV = 2.55452\cdot10^{-100} $\quad(*)&
$1\:\text{ni'upano-} \frac{ML^2}{T^2}=10^{-100} = 0.200043\,\si\eV$\quad(**)\\
$\hbar\,$\footnote{Quantum of angular momentum, Ratio between frequency (space/time) and momentum (momentum/Energy)}$ = 1.00000 $\quad(***)&
$1\:\text{} \frac{ML^2}{T}=1 = 1.00000\cdot \hbar$\quad(***)\\
$\lambda_\mathrm{yellow} = 0.550100\cdot10^{100} $\quad(*)&
$1\:\text{pano-} L=10^{100} = 1.01000\cdot \lambda_\mathrm{yellow}$\quad(**)\\
$k_\mathrm{yellow}\,$\footnote{$\frac\tau\lambda = k = \omega = p = E$ (In natural units - i.e. in these units)}$ = 10.2425\cdot10^{-100} $&
$1\:\text{ni'upano-} \frac1{L}=10^{-100} = 0.0532410\cdot k_\mathrm{yellow}$\\
$k_\mathrm{X-Ray}\,$\footnote{Geometric mean of upper and lower end of the X-Ray interval}$ = 425.454\cdot10^{-40} $&
$1\:\text{ni'uvo-} \frac1{L}=10^{-40} = 0.00120015\cdot k_\mathrm{X-Ray}$\quad(*)\\
\\
$\textrm{Earth g} = 1.02222\cdot10^{-130} $&
$1\:\text{ni'upaci-} \frac{ML}{T^2}=10^{-130} = 0.534301\cdot \textrm{Earth g}$\\
$\si\cm = 0.210202\cdot10^{110} $&
$1\:\text{papa-} L=10^{110} = 2.43132\,\si\cm$\\
$\si\min = 0.00121541\cdot10^{140} $&
$1\:\text{pavo-} T=10^{140} = 415.402\,\si\min$\\
$\textrm{hour} = 0.215130\cdot10^{140} $&
$1\:\text{pavo-} T=10^{140} = 2.33223\,\operatorname h$\\
$\textrm{Liter} = 115.413\cdot10^{330} $&
$1\:\text{civo-} L^3=10^{340} = 4305.54\,l$\quad(*)\\
$\textrm{Area of a soccer field} = 533.150\cdot10^{230} $&
$1\:\text{revo-} L^2=10^{240} = 1023.44\,A$\\
$244 \operatorname m^2\,$\footnote{Size of a home}$ = 2.45300\cdot10^{230} $\quad(*)&
$1\:\text{reci-} L^2=10^{230} = 0.204340\cdot 244 \operatorname m^2$\\
$\textrm{km/h} = 2.00340\cdot10^{-20} $\quad(*)&
$1\:\text{ni'ure-} \frac{L}{T}=10^{-20} = 0.255032\,\textrm{km/h}$\quad(*)\\
$\textrm{mi/h} = 3.12504\cdot10^{-20} $&
$1\:\text{ni'ure-} \frac{L}{T}=10^{-20} = 0.150314\,\textrm{mi/h}$\\
$\textrm{inch}\,$\footnote{100 in = 1 yd = 3 ft}$ = 0.530553\cdot10^{110} $\quad(*)&
$1\:\text{papa-} L=10^{110} = 1.03025\,\operatorname{in}$\\
$\textrm{mile} = 1.13012\cdot10^{120} $&
$1\:\text{pare-} L=10^{120} = 0.444355\,\operatorname{mi}$\quad(*)\\
$\textrm{pound} = 0.0111553\cdot10^{20} $\quad(*)&
$1\:\text{re-} M=10^{20} = 45.2441\,\textrm{pound}$\\
$\textrm{horsepower} = 0.00242053\cdot10^{-140} $&
$1\:\text{ni'upavo-} \frac{ML^2}{T^3}=10^{-140} = 211.120\,\textrm{horsepower}$\\
$\textrm{kcal} = 0.204244\cdot10^{-10} $&
$1\:\text{ni'upa-} \frac{ML^2}{T^2}=10^{-10} = 2.45410\,\textrm{kcal}$\\
$\textrm{kWh} = 0.00122422\cdot10^{0} $&
$1\:\text{} \frac{ML^2}{T^2}=1 = 413.140\,\textrm{kWh}$\\
$\textrm{Household electric field} = 2.03222\cdot10^{-210} $&
$1\:\text{ni'urepa-} \frac{ML}{T^2Q}=10^{-210} = 0.251045\,E_\mathrm H$\\
$\textrm{Earth magnetic field} = 0.0300555\cdot10^{-200} $\quad(**)&
$1\:\text{ni'ureno-} \frac{M}{TQ}=10^{-200} = 15.5202\,B_E$\quad(*)\\
$\textrm{Height of an average man}\,$\footnote{in developed countries}$ = 144.110\cdot10^{110} $&
$1\:\text{pare-} L=10^{120} = 3210.44\,\overline h$\\
$\textrm{Mass of an average man} = 5.12321\cdot10^{20} $&
$1\:\text{re-} M=10^{20} = 0.105124\,\overline m$\\
\\
$\textrm{Age of the Universe} = 52.3321\cdot10^{200} $&
$1\:\text{reno-} T=10^{200} = 0.0103433\,t_U$\\
$\textrm{Size of the observable Universe} = 3.03222\cdot10^{210} $&
$1\:\text{repa-} L=10^{210} = 0.153450\,l_U$\\
$\textrm{Average density of the Universe} = 0.203145\cdot10^{-430} $&
$1\:\text{ni'uvoci-} \frac{M}{L^3}=10^{-430} = 2.51134\,\rho_U$\\
$\textrm{Earth mass} = 2.00433\cdot10^{110} $\quad(*)&
$1\:\text{papa-} M=10^{110} = 0.254510\,m_E$\\
$\textrm{Sun mass}\,$\footnote{The Schwarzschild radius of a mass $M$ is $2GM$}$ = 22.2323\cdot10^{120} $&
$1\:\text{pare-} M=10^{120} = 0.0225454\,m_S$\\
$\textrm{Year} = 0.0233503\cdot10^{150} $&
$1\:\text{pamu-} T=10^{150} = 21.4505\,\operatorname y$\\
$\textrm{Speed of Light} = 1.00000 $\quad(***)&
$1\:\text{} \frac{L}{T}=1 = 1.00000\,c$\quad(***)\\
$\textrm{Parsec} = 0.123004\cdot10^{150} $\quad(*)&
$1\:\text{pamu-} L=10^{150} = 4.12231\,\operatorname{pc}$\\
$\textrm{Astronomical unit} = 0.0153123\cdot10^{140} $&
$1\:\text{pavo-} L=10^{140} = 30.4151\,\operatorname{au}$\\
$\textrm{Earth radius} = 0.0345324\cdot10^{130} $&
$1\:\text{paci-} L=10^{130} = 13.2305\,r_E$\\
$\textrm{Distance Earth-Moon} = 10.2233\cdot10^{130} $&
$1\:\text{paci-} L=10^{130} = 0.0534204\,d_M$\\
$\textrm{Momentum of someone walking} = 3141.00\cdot10^{0} $\quad(*)&
$1\:\text{pa-} \frac{ML}{T}=10^{10} = 145.450\,p$\\
\\
$\textrm{Stefan-Boltzmann constant}\,$\footnote{$\sigma = \frac{\tau^2}{1040}$}$ = 0.0553104\cdot10^{0} $\quad(*)&
$1\:\text{} \frac{M}{T^3\Theta^4}=1 = 10.0251\,\sigma$\quad(*)\\
$\si{\mol} = 2.42022\cdot10^{50} $&
$1\:\text{mu-} =10^{50} = 0.211144\,\si{\mol}$\\
$\textrm{Standard temperature}\,$\footnote{0°C measured from absolute zero}$ = 0.0231210\cdot10^{-100} $&
$1\:\text{ni'upano-} \Theta=10^{-100} = 22.1041\,T_0$\\
$\textrm{Room - standard temperature}\,$\footnote{32 °C}$ = 0.00104045\cdot10^{-100} $&
$1\:\text{ni'upano-} \Theta=10^{-100} = 521.424\,\Theta_R$\\
$\textrm{atm} = 12.2134\cdot10^{-350} $&
$1\:\text{ni'ucimu-} \frac{M}{LT^2}=10^{-350} = 0.0414404\,\textrm{atm}$\\
$\textrm{Particle density at STP}\,$\footnote{Ideal gas law: $N/V = p/T=\operatorname{atm}/T_0$}$ = 314.532\cdot10^{-250} $&
$1\:\text{ni'urevo-} \frac1{L^3}=10^{-240} = 1452.15\,n_0$\\
$\textrm{Speed of sound in air} = 0.0153103\cdot10^{-10} $&
$1\:\text{ni'upa-} \frac{L}{T}=10^{-10} = 30.4223\,c_s$\\
\\
$\mu_0 = 1.00000 $\quad(***)&
$1\:\text{} \frac{ML}{Q^2}=1 = 1.00000\cdot \mu_0$\quad(***)\\
$G = 0.0251045\cdot10^{0} $&
$1\:\text{} \frac{L^3}{MT^2}=1 = 20.3222\cdot G$\\
\caption*{Extensive list of SI units}\\
\arrayrulecolor{black}\hline
\arrayrulecolor{gray}\hline
\arrayrulecolor{light-gray}\hline
$1 \bm{\mathrm{ }} = 1.00000 $\quad(***)&
$1\:\text{} =1 = 1.00000\,\bm{\mathrm{ }}$\quad(***)\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{s}} = 0.111124\cdot10^{-130} $&
$1\:\text{ni'upaci-} \frac1{T}=10^{-130} = 4.55453\,\bm{\mathrm{ }}\frac1{\operatorname{s}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{s}^2} = 0.0123540\cdot10^{-300} $&
$1\:\text{ni'ucino-} \frac1{T^2}=10^{-300} = 40.5412\,\bm{\mathrm{ }}\frac1{\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\operatorname{s} = 4.55453\cdot10^{130} $\quad(*)&
$1\:\text{paci-} T=10^{130} = 0.111124\,\bm{\mathrm{ }}\operatorname{s}$\\
$1 \bm{\mathrm{ }}\operatorname{m} = 100.134\cdot10^{110} $\quad(*)&
$1\:\text{pare-} L=10^{120} = 5542.22\,\bm{\mathrm{ }}\operatorname{m}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}}{\operatorname{s}} = 11.1322\cdot10^{-20} $&
$1\:\text{ni'ure-} \frac{L}{T}=10^{-20} = 0.0454254\,\bm{\mathrm{ }}\frac{\operatorname{m}}{\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}}{\operatorname{s}^2} = 1.24155\cdot10^{-150} $\quad(*)&
$1\:\text{ni'upamu-} \frac{L}{T^2}=10^{-150} = 0.404332\,\bm{\mathrm{ }}\frac{\operatorname{m}}{\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\operatorname{m}\operatorname{s} = 501.055\cdot10^{240} $\quad(*)&
$1\:\text{revo-} LT=10^{240} = 0.00110531\,\bm{\mathrm{ }}\operatorname{m}\operatorname{s}$\\
$1 \bm{\mathrm{ }}\operatorname{m}^2 = 0.0100313\cdot10^{230} $\quad(*)&
$1\:\text{reci-} L^2=10^{230} = 55.2451\,\bm{\mathrm{ }}\operatorname{m}^2$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}^2}{\operatorname{s}} = 0.00111520\cdot10^{100} $&
$1\:\text{pano-} \frac{L^2}{T}=10^{100} = 453.100\,\bm{\mathrm{ }}\frac{\operatorname{m}^2}{\operatorname{s}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}^2}{\operatorname{s}^2} = 124.420\cdot10^{-40} $&
$1\:\text{ni'uvo-} \frac{L^2}{T^2}=10^{-40} = 0.00403254\,\bm{\mathrm{ }}\frac{\operatorname{m}^2}{\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\operatorname{m}^2\operatorname{s} = 0.0502303\cdot10^{400} $&
$1\:\text{vono-} L^2T=10^{400} = 11.0335\,\bm{\mathrm{ }}\operatorname{m}^2\operatorname{s}$\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}} = 5542.22\cdot10^{-120} $\quad(*)&
$1\:\text{ni'upapa-} \frac1{L}=10^{-110} = 100.134\,\bm{\mathrm{ }}\frac1{\operatorname{m}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}\operatorname{s}} = 0.00110531\cdot10^{-240} $&
$1\:\text{ni'urevo-} \frac1{LT}=10^{-240} = 501.055\,\bm{\mathrm{ }}\frac1{\operatorname{m}\operatorname{s}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}\operatorname{s}^2} = 123.321\cdot10^{-420} $&
$1\:\text{ni'uvore-} \frac1{LT^2}=10^{-420} = 0.00410453\,\bm{\mathrm{ }}\frac1{\operatorname{m}\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{s}}{\operatorname{m}} = 0.0454254\cdot10^{20} $&
$1\:\text{re-} \frac{T}{L}=10^{20} = 11.1322\,\bm{\mathrm{ }}\frac{\operatorname{s}}{\operatorname{m}}$\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}^2} = 55.2451\cdot10^{-230} $\quad(*)&
$1\:\text{ni'ureci-} \frac1{L^2}=10^{-230} = 0.0100313\,\bm{\mathrm{ }}\frac1{\operatorname{m}^2}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}^2\operatorname{s}} = 11.0335\cdot10^{-400} $&
$1\:\text{ni'uvono-} \frac1{L^2T}=10^{-400} = 0.0502303\,\bm{\mathrm{ }}\frac1{\operatorname{m}^2\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}^2\operatorname{s}^2} = 1.23102\cdot10^{-530} $&
$1\:\text{ni'umuci-} \frac1{L^2T^2}=10^{-530} = 0.411540\,\bm{\mathrm{ }}\frac1{\operatorname{m}^2\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{s}}{\operatorname{m}^2} = 453.100\cdot10^{-100} $\quad(*)&
$1\:\text{ni'upano-} \frac{T}{L^2}=10^{-100} = 0.00111520\,\bm{\mathrm{ }}\frac{\operatorname{s}}{\operatorname{m}^2}$\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}^3} = 0.551122\cdot10^{-340} $\quad(*)&
$1\:\text{ni'ucivo-} \frac1{L^3}=10^{-340} = 1.00451\,\bm{\mathrm{ }}\frac1{\operatorname{m}^3}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}^3\operatorname{s}} = 0.110142\cdot10^{-510} $&
$1\:\text{ni'umupa-} \frac1{L^3T}=10^{-510} = 5.03514\,\bm{\mathrm{ }}\frac1{\operatorname{m}^3\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}^3\operatorname{s}^2} = 0.0122444\cdot10^{-1040} $&
$1\:\text{ni'upanovo-} \frac1{L^3T^2}=10^{-1040} = 41.3025\,\bm{\mathrm{ }}\frac1{\operatorname{m}^3\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{s}}{\operatorname{m}^3} = 4.51504\cdot10^{-210} $&
$1\:\text{ni'urepa-} \frac{T}{L^3}=10^{-210} = 0.112115\,\bm{\mathrm{ }}\frac{\operatorname{s}}{\operatorname{m}^3}$\\
\arrayrulecolor{light-gray}\hline
$1 \bm{\mathrm{ }}\operatorname{kg} = 0.0240550\cdot10^{20} $\quad(*)&
$1\:\text{re-} M=10^{20} = 21.2105\,\bm{\mathrm{ }}\operatorname{kg}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{s}} = 3122.52\cdot10^{-120} $&
$1\:\text{ni'upapa-} \frac{M}{T}=10^{-110} = 150.431\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{s}^2} = 351.530\cdot10^{-250} $&
$1\:\text{ni'urevo-} \frac{M}{T^2}=10^{-240} = 1313.24\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\operatorname{kg}\operatorname{s} = 0.212422\cdot10^{150} $&
$1\:\text{pamu-} MT=10^{150} = 2.40153\,\bm{\mathrm{ }}\operatorname{kg}\operatorname{s}$\\
$1 \bm{\mathrm{ }}\operatorname{kg}\operatorname{m} = 2.41410\cdot10^{130} $&
$1\:\text{paci-} ML=10^{130} = 0.211332\,\bm{\mathrm{ }}\operatorname{kg}\operatorname{m}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}}{\operatorname{s}} = 0.313204\cdot10^{0} $&
$1\:\text{} \frac{ML}{T}=1 = 1.50133\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}}{\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}}{\operatorname{s}^2} = 0.0352544\cdot10^{-130} $&
$1\:\text{ni'upaci-} \frac{ML}{T^2}=10^{-130} = 13.1055\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}}{\operatorname{s}^2}$\quad(*)\\
$1 \bm{\mathrm{ }}\operatorname{kg}\operatorname{m}\operatorname{s} = 21.3200\cdot10^{300} $\quad(*)&
$1\:\text{cino-} MLT=10^{300} = 0.0235335\,\bm{\mathrm{ }}\operatorname{kg}\operatorname{m}\operatorname{s}$\\
$1 \bm{\mathrm{ }}\operatorname{kg}\operatorname{m}^2 = 242.232\cdot10^{240} $&
$1\:\text{revo-} ML^2=10^{240} = 0.00211001\,\bm{\mathrm{ }}\operatorname{kg}\operatorname{m}^2$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2}{\operatorname{s}} = 31.4121\cdot10^{110} $&
$1\:\text{papa-} \frac{ML^2}{T}=10^{110} = 0.0145435\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2}{\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2}{\operatorname{s}^2} = 3.54003\cdot10^{-20} $\quad(*)&
$1\:\text{ni'ure-} \frac{ML^2}{T^2}=10^{-20} = 0.130431\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2}{\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\operatorname{kg}\operatorname{m}^2\operatorname{s} = 0.00213535\cdot10^{420} $&
$1\:\text{vore-} ML^2T=10^{420} = 234.522\,\bm{\mathrm{ }}\operatorname{kg}\operatorname{m}^2\operatorname{s}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}} = 240.131\cdot10^{-100} $&
$1\:\text{ni'upano-} \frac{M}{L}=10^{-100} = 0.00212442\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}\operatorname{s}} = 31.1342\cdot10^{-230} $&
$1\:\text{ni'ureci-} \frac{M}{LT}=10^{-230} = 0.0151131\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}\operatorname{s}^2} = 3.50514\cdot10^{-400} $&
$1\:\text{ni'uvono-} \frac{M}{LT^2}=10^{-400} = 0.131554\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}\operatorname{s}^2}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}}{\operatorname{m}} = 0.00212045\cdot10^{40} $&
$1\:\text{vo-} \frac{MT}{L}=10^{40} = 241.013\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}}{\operatorname{m}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^2} = 2.35313\cdot10^{-210} $&
$1\:\text{ni'urepa-} \frac{M}{L^2}=10^{-210} = 0.213220\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^2\operatorname{s}} = 0.310433\cdot10^{-340} $&
$1\:\text{ni'ucivo-} \frac{M}{L^2T}=10^{-340} = 1.51432\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^2\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^2\operatorname{s}^2} = 0.0345504\cdot10^{-510} $\quad(*)&
$1\:\text{ni'umupa-} \frac{M}{L^2T^2}=10^{-510} = 13.2224\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^2\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}}{\operatorname{m}^2} = 21.1312\cdot10^{-40} $&
$1\:\text{ni'uvo-} \frac{MT}{L^2}=10^{-40} = 0.0241433\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}}{\operatorname{m}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^3} = 0.0234500\cdot10^{-320} $\quad(*)&
$1\:\text{ni'ucire-} \frac{M}{L^3}=10^{-320} = 21.3555\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^3}$\quad(**)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^3\operatorname{s}} = 3055.25\cdot10^{-500} $\quad(*)&
$1\:\text{ni'uvomu-} \frac{M}{L^3T}=10^{-450} = 152.133\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^3\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^3\operatorname{s}^2} = 344.500\cdot10^{-1030} $\quad(*)&
$1\:\text{ni'upanore-} \frac{M}{L^3T^2}=10^{-1020} = 1324.55\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^3\operatorname{s}^2}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}}{\operatorname{m}^3} = 0.210541\cdot10^{-150} $&
$1\:\text{ni'upamu-} \frac{MT}{L^3}=10^{-150} = 2.42255\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}}{\operatorname{m}^3}$\quad(*)\\
\arrayrulecolor{gray}\hline
\arrayrulecolor{light-gray}\hline
$1 \bm{\mathrm{ }}\frac1{\operatorname{C}} = 2.30130\cdot10^{-40} $&
$1\:\text{ni'uvo-} \frac1{Q}=10^{-40} = 0.222054\,\bm{\mathrm{ }}\frac1{\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{s}\operatorname{C}} = 0.300224\cdot10^{-210} $\quad(*)&
$1\:\text{ni'urepa-} \frac1{TQ}=10^{-210} = 1.55421\,\bm{\mathrm{ }}\frac1{\operatorname{s}\operatorname{C}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{s}^2\operatorname{C}} = 0.0334120\cdot10^{-340} $&
$1\:\text{ni'ucivo-} \frac1{T^2Q}=10^{-340} = 13.5414\,\bm{\mathrm{ }}\frac1{\operatorname{s}^2\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{s}}{\operatorname{C}} = 20.3045\cdot10^{50} $&
$1\:\text{mu-} \frac{T}{Q}=10^{50} = 0.0251255\,\bm{\mathrm{ }}\frac{\operatorname{s}}{\operatorname{C}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}}{\operatorname{C}} = 230.532\cdot10^{30} $&
$1\:\text{vo-} \frac{L}{Q}=10^{40} = 2213.04\,\bm{\mathrm{ }}\frac{\operatorname{m}}{\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}}{\operatorname{s}\operatorname{C}} = 30.1115\cdot10^{-100} $&
$1\:\text{ni'upano-} \frac{L}{TQ}=10^{-100} = 0.0155110\,\bm{\mathrm{ }}\frac{\operatorname{m}}{\operatorname{s}\operatorname{C}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}}{\operatorname{s}^2\operatorname{C}} = 3.35110\cdot10^{-230} $&
$1\:\text{ni'ureci-} \frac{L}{T^2Q}=10^{-230} = 0.135135\,\bm{\mathrm{ }}\frac{\operatorname{m}}{\operatorname{s}^2\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}\operatorname{s}}{\operatorname{C}} = 2034.10\cdot10^{200} $&
$1\:\text{repa-} \frac{LT}{Q}=10^{210} = 250.421\,\bm{\mathrm{ }}\frac{\operatorname{m}\operatorname{s}}{\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}^2}{\operatorname{C}} = 0.0231335\cdot10^{150} $&
$1\:\text{pamu-} \frac{L^2}{Q}=10^{150} = 22.0520\,\bm{\mathrm{ }}\frac{\operatorname{m}^2}{\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}^2}{\operatorname{s}\operatorname{C}} = 0.00302011\cdot10^{20} $&
$1\:\text{re-} \frac{L^2}{TQ}=10^{20} = 154.400\,\bm{\mathrm{ }}\frac{\operatorname{m}^2}{\operatorname{s}\operatorname{C}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}^2}{\operatorname{s}^2\operatorname{C}} = 340.101\cdot10^{-120} $&
$1\:\text{ni'upare-} \frac{L^2}{T^2Q}=10^{-120} = 0.00134500\,\bm{\mathrm{ }}\frac{\operatorname{m}^2}{\operatorname{s}^2\operatorname{C}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}^2\operatorname{s}}{\operatorname{C}} = 0.204132\cdot10^{320} $&
$1\:\text{cire-} \frac{L^2T}{Q}=10^{320} = 2.45545\,\bm{\mathrm{ }}\frac{\operatorname{m}^2\operatorname{s}}{\operatorname{C}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}\operatorname{C}} = 0.0225330\cdot10^{-150} $&
$1\:\text{ni'upamu-} \frac1{LQ}=10^{-150} = 22.2445\,\bm{\mathrm{ }}\frac1{\operatorname{m}\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}\operatorname{s}\operatorname{C}} = 0.00255335\cdot10^{-320} $\quad(*)&
$1\:\text{ni'ucire-} \frac1{LTQ}=10^{-320} = 200.133\,\bm{\mathrm{ }}\frac1{\operatorname{m}\operatorname{s}\operatorname{C}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}\operatorname{s}^2\operatorname{C}} = 333.131\cdot10^{-500} $&
$1\:\text{ni'umuno-} \frac1{LT^2Q}=10^{-500} = 0.00140054\,\bm{\mathrm{ }}\frac1{\operatorname{m}\operatorname{s}^2\operatorname{C}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{s}}{\operatorname{m}\operatorname{C}} = 0.202325\cdot10^{-20} $&
$1\:\text{ni'ure-} \frac{T}{LQ}=10^{-20} = 2.52134\,\bm{\mathrm{ }}\frac{\operatorname{s}}{\operatorname{m}\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}^2\operatorname{C}} = 224.531\cdot10^{-310} $&
$1\:\text{ni'ucino-} \frac1{L^2Q}=10^{-300} = 2232.41\,\bm{\mathrm{ }}\frac1{\operatorname{m}^2\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}^2\operatorname{s}\operatorname{C}} = 25.4451\cdot10^{-440} $&
$1\:\text{ni'uvovo-} \frac1{L^2TQ}=10^{-440} = 0.0200445\,\bm{\mathrm{ }}\frac1{\operatorname{m}^2\operatorname{s}\operatorname{C}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}^2\operatorname{s}^2\operatorname{C}} = 3.32144\cdot10^{-1010} $&
$1\:\text{ni'upanopa-} \frac1{L^2T^2Q}=10^{-1010} = 0.140335\,\bm{\mathrm{ }}\frac1{\operatorname{m}^2\operatorname{s}^2\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{s}}{\operatorname{m}^2\operatorname{C}} = 2020.10\cdot10^{-140} $&
$1\:\text{ni'upaci-} \frac{T}{L^2Q}=10^{-130} = 253.014\,\bm{\mathrm{ }}\frac{\operatorname{s}}{\operatorname{m}^2\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}^3\operatorname{C}} = 2.24132\cdot10^{-420} $&
$1\:\text{ni'uvore-} \frac1{L^3Q}=10^{-420} = 0.224034\,\bm{\mathrm{ }}\frac1{\operatorname{m}^3\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}^3\operatorname{s}\operatorname{C}} = 0.254004\cdot10^{-550} $\quad(*)&
$1\:\text{ni'umumu-} \frac1{L^3TQ}=10^{-550} = 2.01203\,\bm{\mathrm{ }}\frac1{\operatorname{m}^3\operatorname{s}\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}^3\operatorname{s}^2\operatorname{C}} = 0.0331203\cdot10^{-1120} $&
$1\:\text{ni'upapare-} \frac1{L^3T^2Q}=10^{-1120} = 14.1021\,\bm{\mathrm{ }}\frac1{\operatorname{m}^3\operatorname{s}^2\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{s}}{\operatorname{m}^3\operatorname{C}} = 20.1251\cdot10^{-250} $&
$1\:\text{ni'uremu-} \frac{T}{L^3Q}=10^{-250} = 0.0253455\,\bm{\mathrm{ }}\frac{\operatorname{s}}{\operatorname{m}^3\operatorname{C}}$\quad(*)\\
\arrayrulecolor{light-gray}\hline
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{C}} = 0.104304\cdot10^{-20} $&
$1\:\text{ni'ure-} \frac{M}{Q}=10^{-20} = 5.15525\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{C}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{s}\operatorname{C}} = 0.0120401\cdot10^{-150} $&
$1\:\text{ni'upamu-} \frac{M}{TQ}=10^{-150} = 42.3434\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{s}\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{s}^2\operatorname{C}} = 0.00134244\cdot10^{-320} $&
$1\:\text{ni'ucire-} \frac{M}{T^2Q}=10^{-320} = 341.002\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{s}^2\operatorname{C}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}}{\operatorname{C}} = 0.534220\cdot10^{110} $&
$1\:\text{papa-} \frac{MT}{Q}=10^{110} = 1.02231\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}}{\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}}{\operatorname{C}} = 10.4453\cdot10^{50} $&
$1\:\text{mu-} \frac{ML}{Q}=10^{50} = 0.0514254\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}}{\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}}{\operatorname{s}\operatorname{C}} = 1.21011\cdot10^{-40} $&
$1\:\text{ni'uvo-} \frac{ML}{TQ}=10^{-40} = 0.422330\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}}{\operatorname{s}\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}}{\operatorname{s}^2\operatorname{C}} = 0.134522\cdot10^{-210} $&
$1\:\text{ni'urepa-} \frac{ML}{T^2Q}=10^{-210} = 3.40005\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}}{\operatorname{s}^2\operatorname{C}}$\quad(**)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}\operatorname{s}}{\operatorname{C}} = 53.5523\cdot10^{220} $\quad(*)&
$1\:\text{rere-} \frac{MLT}{Q}=10^{220} = 0.0102045\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}\operatorname{s}}{\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2}{\operatorname{C}} = 1050.43\cdot10^{200} $&
$1\:\text{repa-} \frac{ML^2}{Q}=10^{210} = 513.025\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2}{\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2}{\operatorname{s}\operatorname{C}} = 121.222\cdot10^{30} $&
$1\:\text{vo-} \frac{ML^2}{TQ}=10^{40} = 4212.25\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2}{\operatorname{s}\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2}{\operatorname{s}^2\operatorname{C}} = 13.5201\cdot10^{-100} $&
$1\:\text{ni'upano-} \frac{ML^2}{T^2Q}=10^{-100} = 0.0335014\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2}{\operatorname{s}^2\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2\operatorname{s}}{\operatorname{C}} = 0.00541231\cdot10^{340} $&
$1\:\text{civo-} \frac{ML^2T}{Q}=10^{340} = 101.504\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2\operatorname{s}}{\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}\operatorname{C}} = 1041.15\cdot10^{-140} $&
$1\:\text{ni'upaci-} \frac{M}{LQ}=10^{-130} = 521.203\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}\operatorname{s}\operatorname{C}} = 120.151\cdot10^{-310} $&
$1\:\text{ni'ucino-} \frac{M}{LTQ}=10^{-300} = 4245.44\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}\operatorname{s}\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}\operatorname{s}^2\operatorname{C}} = 13.4010\cdot10^{-440} $&
$1\:\text{ni'uvovo-} \frac{M}{LT^2Q}=10^{-440} = 0.0342000\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}\operatorname{s}^2\operatorname{C}}$\quad(**)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}}{\operatorname{m}\operatorname{C}} = 0.00532520\cdot10^{0} $&
$1\:\text{} \frac{MT}{LQ}=1 = 102.413\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}}{\operatorname{m}\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^2\operatorname{C}} = 10.3531\cdot10^{-250} $&
$1\:\text{ni'uremu-} \frac{M}{L^2Q}=10^{-250} = 0.0522443\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^2\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^2\operatorname{s}\operatorname{C}} = 1.15542\cdot10^{-420} $\quad(*)&
$1\:\text{ni'uvore-} \frac{M}{L^2TQ}=10^{-420} = 0.430055\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^2\operatorname{s}\operatorname{C}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^2\operatorname{s}^2\operatorname{C}} = 0.133333\cdot10^{-550} $&
$1\:\text{ni'umumu-} \frac{M}{L^2T^2Q}=10^{-550} = 3.43000\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^2\operatorname{s}^2\operatorname{C}}$\quad(**)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}}{\operatorname{m}^2\operatorname{C}} = 53.1223\cdot10^{-120} $&
$1\:\text{ni'upare-} \frac{MT}{L^2Q}=10^{-120} = 0.0102555\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}}{\operatorname{m}^2\operatorname{C}}$\quad(**)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^3\operatorname{C}} = 0.103343\cdot10^{-400} $&
$1\:\text{ni'uvono-} \frac{M}{L^3Q}=10^{-400} = 5.24125\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^3\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^3\operatorname{s}\operatorname{C}} = 0.0115333\cdot10^{-530} $&
$1\:\text{ni'umuci-} \frac{M}{L^3TQ}=10^{-530} = 43.1213\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^3\operatorname{s}\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^3\operatorname{s}^2\operatorname{C}} = 0.00133101\cdot10^{-1100} $&
$1\:\text{ni'upapano-} \frac{M}{L^3T^2Q}=10^{-1100} = 344.002\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^3\operatorname{s}^2\operatorname{C}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}}{\operatorname{m}^3\operatorname{C}} = 0.525532\cdot10^{-230} $\quad(*)&
$1\:\text{ni'ureci-} \frac{MT}{L^3Q}=10^{-230} = 1.03142\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}}{\operatorname{m}^3\operatorname{C}}$\\
\arrayrulecolor{gray}\hline
\arrayrulecolor{light-gray}\hline
$1 \bm{\mathrm{ }}\operatorname{C} = 0.222054\cdot10^{40} $&
$1\:\text{vo-} Q=10^{40} = 2.30130\,\bm{\mathrm{ }}\operatorname{C}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{C}}{\operatorname{s}} = 0.0251255\cdot10^{-50} $\quad(*)&
$1\:\text{ni'umu-} \frac{Q}{T}=10^{-50} = 20.3045\,\bm{\mathrm{ }}\frac{\operatorname{C}}{\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{C}}{\operatorname{s}^2} = 0.00324152\cdot10^{-220} $&
$1\:\text{ni'urere-} \frac{Q}{T^2}=10^{-220} = 142.315\,\bm{\mathrm{ }}\frac{\operatorname{C}}{\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\operatorname{s}\operatorname{C} = 1.55421\cdot10^{210} $\quad(*)&
$1\:\text{repa-} TQ=10^{210} = 0.300224\,\bm{\mathrm{ }}\operatorname{s}\operatorname{C}$\quad(*)\\
$1 \bm{\mathrm{ }}\operatorname{m}\operatorname{C} = 22.2445\cdot10^{150} $&
$1\:\text{pamu-} LQ=10^{150} = 0.0225330\,\bm{\mathrm{ }}\operatorname{m}\operatorname{C}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}\operatorname{C}}{\operatorname{s}} = 2.52134\cdot10^{20} $&
$1\:\text{re-} \frac{LQ}{T}=10^{20} = 0.202325\,\bm{\mathrm{ }}\frac{\operatorname{m}\operatorname{C}}{\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}\operatorname{C}}{\operatorname{s}^2} = 0.325125\cdot10^{-110} $&
$1\:\text{ni'upapa-} \frac{LQ}{T^2}=10^{-110} = 1.42031\,\bm{\mathrm{ }}\frac{\operatorname{m}\operatorname{C}}{\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\operatorname{m}\operatorname{s}\operatorname{C} = 200.133\cdot10^{320} $\quad(*)&
$1\:\text{cire-} LTQ=10^{320} = 0.00255335\,\bm{\mathrm{ }}\operatorname{m}\operatorname{s}\operatorname{C}$\quad(*)\\
$1 \bm{\mathrm{ }}\operatorname{m}^2\operatorname{C} = 2232.41\cdot10^{300} $&
$1\:\text{cipa-} L^2Q=10^{310} = 224.531\,\bm{\mathrm{ }}\operatorname{m}^2\operatorname{C}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}^2\operatorname{C}}{\operatorname{s}} = 253.014\cdot10^{130} $&
$1\:\text{pavo-} \frac{L^2Q}{T}=10^{140} = 2020.10\,\bm{\mathrm{ }}\frac{\operatorname{m}^2\operatorname{C}}{\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}^2\operatorname{C}}{\operatorname{s}^2} = 33.0103\cdot10^{0} $&
$1\:\text{} \frac{L^2Q}{T^2}=1 = 0.0141343\,\bm{\mathrm{ }}\frac{\operatorname{m}^2\operatorname{C}}{\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\operatorname{m}^2\operatorname{s}\operatorname{C} = 0.0200445\cdot10^{440} $\quad(*)&
$1\:\text{vovo-} L^2TQ=10^{440} = 25.4451\,\bm{\mathrm{ }}\operatorname{m}^2\operatorname{s}\operatorname{C}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{C}}{\operatorname{m}} = 2213.04\cdot10^{-40} $&
$1\:\text{ni'uci-} \frac{Q}{L}=10^{-30} = 230.532\,\bm{\mathrm{ }}\frac{\operatorname{C}}{\operatorname{m}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{C}}{\operatorname{m}\operatorname{s}} = 250.421\cdot10^{-210} $&
$1\:\text{ni'ureno-} \frac{Q}{LT}=10^{-200} = 2034.10\,\bm{\mathrm{ }}\frac{\operatorname{C}}{\operatorname{m}\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{C}}{\operatorname{m}\operatorname{s}^2} = 32.3221\cdot10^{-340} $&
$1\:\text{ni'ucivo-} \frac{Q}{LT^2}=10^{-340} = 0.0143004\,\bm{\mathrm{ }}\frac{\operatorname{C}}{\operatorname{m}\operatorname{s}^2}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{C}}{\operatorname{m}} = 0.0155110\cdot10^{100} $\quad(*)&
$1\:\text{pano-} \frac{TQ}{L}=10^{100} = 30.1115\,\bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{C}}{\operatorname{m}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{C}}{\operatorname{m}^2} = 22.0520\cdot10^{-150} $&
$1\:\text{ni'upamu-} \frac{Q}{L^2}=10^{-150} = 0.0231335\,\bm{\mathrm{ }}\frac{\operatorname{C}}{\operatorname{m}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{C}}{\operatorname{m}^2\operatorname{s}} = 2.45545\cdot10^{-320} $\quad(*)&
$1\:\text{ni'ucire-} \frac{Q}{L^2T}=10^{-320} = 0.204132\,\bm{\mathrm{ }}\frac{\operatorname{C}}{\operatorname{m}^2\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{C}}{\operatorname{m}^2\operatorname{s}^2} = 0.322252\cdot10^{-450} $&
$1\:\text{ni'uvomu-} \frac{Q}{L^2T^2}=10^{-450} = 1.43253\,\bm{\mathrm{ }}\frac{\operatorname{C}}{\operatorname{m}^2\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{C}}{\operatorname{m}^2} = 154.400\cdot10^{-20} $\quad(*)&
$1\:\text{ni'ure-} \frac{TQ}{L^2}=10^{-20} = 0.00302011\,\bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{C}}{\operatorname{m}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{C}}{\operatorname{m}^3} = 0.220132\cdot10^{-300} $&
$1\:\text{ni'ucino-} \frac{Q}{L^3}=10^{-300} = 2.32142\,\bm{\mathrm{ }}\frac{\operatorname{C}}{\operatorname{m}^3}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{C}}{\operatorname{m}^3\operatorname{s}} = 0.0245113\cdot10^{-430} $&
$1\:\text{ni'uvoci-} \frac{Q}{L^3T}=10^{-430} = 20.4455\,\bm{\mathrm{ }}\frac{\operatorname{C}}{\operatorname{m}^3\operatorname{s}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{C}}{\operatorname{m}^3\operatorname{s}^2} = 0.00321324\cdot10^{-1000} $&
$1\:\text{ni'upanono-} \frac{Q}{L^3T^2}=10^{-1000} = 143.544\,\bm{\mathrm{ }}\frac{\operatorname{C}}{\operatorname{m}^3\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{C}}{\operatorname{m}^3} = 1.54051\cdot10^{-130} $&
$1\:\text{ni'upaci-} \frac{TQ}{L^3}=10^{-130} = 0.302505\,\bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{C}}{\operatorname{m}^3}$\\
\arrayrulecolor{light-gray}\hline
$1 \bm{\mathrm{ }}\operatorname{kg}\operatorname{C} = 0.0102403\cdot10^{100} $&
$1\:\text{pano-} MQ=10^{100} = 53.3010\,\bm{\mathrm{ }}\operatorname{kg}\operatorname{C}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}}{\operatorname{s}} = 1142.44\cdot10^{-40} $&
$1\:\text{ni'uci-} \frac{MQ}{T}=10^{-30} = 435.205\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}}{\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}}{\operatorname{s}^2} = 131.451\cdot10^{-210} $&
$1\:\text{ni'ureno-} \frac{MQ}{T^2}=10^{-200} = 3511.55\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}}{\operatorname{s}^2}$\quad(*)\\
$1 \bm{\mathrm{ }}\operatorname{kg}\operatorname{s}\operatorname{C} = 0.0521114\cdot10^{230} $&
$1\:\text{reci-} MTQ=10^{230} = 10.4125\,\bm{\mathrm{ }}\operatorname{kg}\operatorname{s}\operatorname{C}$\\
$1 \bm{\mathrm{ }}\operatorname{kg}\operatorname{m}\operatorname{C} = 1.02545\cdot10^{210} $&
$1\:\text{repa-} MLQ=10^{210} = 0.531313\,\bm{\mathrm{ }}\operatorname{kg}\operatorname{m}\operatorname{C}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}\operatorname{C}}{\operatorname{s}} = 0.114451\cdot10^{40} $&
$1\:\text{vo-} \frac{MLQ}{T}=10^{40} = 4.34041\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}\operatorname{C}}{\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}\operatorname{C}}{\operatorname{s}^2} = 0.0132121\cdot10^{-50} $&
$1\:\text{ni'umu-} \frac{MLQ}{T^2}=10^{-50} = 35.0144\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}\operatorname{C}}{\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\operatorname{kg}\operatorname{m}\operatorname{s}\operatorname{C} = 5.22353\cdot10^{340} $&
$1\:\text{civo-} MLTQ=10^{340} = 0.103541\,\bm{\mathrm{ }}\operatorname{kg}\operatorname{m}\operatorname{s}\operatorname{C}$\\
$1 \bm{\mathrm{ }}\operatorname{kg}\operatorname{m}^2\operatorname{C} = 103.132\cdot10^{320} $&
$1\:\text{cire-} ML^2Q=10^{320} = 0.00530021\,\bm{\mathrm{ }}\operatorname{kg}\operatorname{m}^2\operatorname{C}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2\operatorname{C}}{\operatorname{s}} = 11.5054\cdot10^{150} $&
$1\:\text{pamu-} \frac{ML^2Q}{T}=10^{150} = 0.0432520\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2\operatorname{C}}{\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2\operatorname{C}}{\operatorname{s}^2} = 1.32352\cdot10^{20} $&
$1\:\text{re-} \frac{ML^2Q}{T^2}=10^{20} = 0.345134\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2\operatorname{C}}{\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\operatorname{kg}\operatorname{m}^2\operatorname{s}\operatorname{C} = 524.035\cdot10^{450} $&
$1\:\text{muno-} ML^2TQ=10^{500} = 1033.53\,\bm{\mathrm{ }}\operatorname{kg}\operatorname{m}^2\operatorname{s}\operatorname{C}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}}{\operatorname{m}} = 102.221\cdot10^{-20} $&
$1\:\text{ni'ure-} \frac{MQ}{L}=10^{-20} = 0.00534311\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}}{\operatorname{m}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}}{\operatorname{m}\operatorname{s}} = 11.4042\cdot10^{-150} $&
$1\:\text{ni'upamu-} \frac{MQ}{LT}=10^{-150} = 0.0440335\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}}{\operatorname{m}\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}}{\operatorname{m}\operatorname{s}^2} = 1.31222\cdot10^{-320} $&
$1\:\text{ni'ucire-} \frac{MQ}{LT^2}=10^{-320} = 0.352211\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}}{\operatorname{m}\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{C}}{\operatorname{m}} = 515.441\cdot10^{110} $&
$1\:\text{pare-} \frac{MTQ}{L}=10^{120} = 1043.14\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{C}}{\operatorname{m}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}}{\operatorname{m}^2} = 1.02040\cdot10^{-130} $&
$1\:\text{ni'upaci-} \frac{MQ}{L^2}=10^{-130} = 0.540013\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}}{\operatorname{m}^2}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}}{\operatorname{m}^2\operatorname{s}} = 0.113440\cdot10^{-300} $&
$1\:\text{ni'ucino-} \frac{MQ}{L^2T}=10^{-300} = 4.41511\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}}{\operatorname{m}^2\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}}{\operatorname{m}^2\operatorname{s}^2} = 0.0130553\cdot10^{-430} $\quad(*)&
$1\:\text{ni'uvoci-} \frac{MQ}{L^2T^2}=10^{-430} = 35.3230\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}}{\operatorname{m}^2\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{C}}{\operatorname{m}^2} = 5.14210 $&
$1\:\text{} \frac{MTQ}{L^2}=1 = 0.104503\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{C}}{\operatorname{m}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}}{\operatorname{m}^3} = 0.0101455\cdot10^{-240} $\quad(*)&
$1\:\text{ni'urevo-} \frac{MQ}{L^3}=10^{-240} = 54.1322\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}}{\operatorname{m}^3}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}}{\operatorname{m}^3\operatorname{s}} = 1132.35\cdot10^{-420} $&
$1\:\text{ni'uvopa-} \frac{MQ}{L^3T}=10^{-410} = 443.045\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}}{\operatorname{m}^3\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}}{\operatorname{m}^3\operatorname{s}^2} = 130.325\cdot10^{-550} $&
$1\:\text{ni'umuvo-} \frac{MQ}{L^3T^2}=10^{-540} = 3542.50\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}}{\operatorname{m}^3\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{C}}{\operatorname{m}^3} = 0.0512541\cdot10^{-110} $&
$1\:\text{ni'upapa-} \frac{MTQ}{L^3}=10^{-110} = 10.5053\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{C}}{\operatorname{m}^3}$\\
\arrayrulecolor{black}\hline
\arrayrulecolor{gray}\hline
\arrayrulecolor{light-gray}\hline
$1 \bm{\mathrm{ }}\frac1{\operatorname{K}} = 0.0255345\cdot10^{110} $\quad(*)&
$1\:\text{papa-} \frac1{\Theta}=10^{110} = 20.0125\,\bm{\mathrm{ }}\frac1{\operatorname{K}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{s}\operatorname{K}} = 0.00333143\cdot10^{-20} $&
$1\:\text{ni'ure-} \frac1{T\Theta}=10^{-20} = 140.051\,\bm{\mathrm{ }}\frac1{\operatorname{s}\operatorname{K}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{s}^2\operatorname{K}} = 415.145\cdot10^{-200} $&
$1\:\text{ni'ureno-} \frac1{T^2\Theta}=10^{-200} = 0.00122023\,\bm{\mathrm{ }}\frac1{\operatorname{s}^2\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{s}}{\operatorname{K}} = 0.225335\cdot10^{240} $&
$1\:\text{revo-} \frac{T}{\Theta}=10^{240} = 2.22440\,\bm{\mathrm{ }}\frac{\operatorname{s}}{\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}}{\operatorname{K}} = 3.00235\cdot10^{220} $\quad(*)&
$1\:\text{rere-} \frac{L}{\Theta}=10^{220} = 0.155413\,\bm{\mathrm{ }}\frac{\operatorname{m}}{\operatorname{K}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}}{\operatorname{s}\operatorname{K}} = 0.334131\cdot10^{50} $&
$1\:\text{mu-} \frac{L}{T\Theta}=10^{50} = 1.35411\,\bm{\mathrm{ }}\frac{\operatorname{m}}{\operatorname{s}\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}}{\operatorname{s}^2\operatorname{K}} = 0.0420244\cdot10^{-40} $&
$1\:\text{ni'uvo-} \frac{L}{T^2\Theta}=10^{-40} = 12.1411\,\bm{\mathrm{ }}\frac{\operatorname{m}}{\operatorname{s}^2\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}\operatorname{s}}{\operatorname{K}} = 23.0135\cdot10^{350} $&
$1\:\text{cimu-} \frac{LT}{\Theta}=10^{350} = 0.0222050\,\bm{\mathrm{ }}\frac{\operatorname{m}\operatorname{s}}{\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}^2}{\operatorname{K}} = 301.125\cdot10^{330} $&
$1\:\text{civo-} \frac{L^2}{\Theta}=10^{340} = 1551.02\,\bm{\mathrm{ }}\frac{\operatorname{m}^2}{\operatorname{K}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}^2}{\operatorname{s}\operatorname{K}} = 33.5121\cdot10^{200} $&
$1\:\text{reno-} \frac{L^2}{T\Theta}=10^{200} = 0.0135131\,\bm{\mathrm{ }}\frac{\operatorname{m}^2}{\operatorname{s}\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}^2}{\operatorname{s}^2\operatorname{K}} = 4.21344\cdot10^{30} $&
$1\:\text{ci-} \frac{L^2}{T^2\Theta}=10^{30} = 0.121155\,\bm{\mathrm{ }}\frac{\operatorname{m}^2}{\operatorname{s}^2\operatorname{K}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}^2\operatorname{s}}{\operatorname{K}} = 2305.41\cdot10^{500} $&
$1\:\text{mupa-} \frac{L^2T}{\Theta}=10^{510} = 221.300\,\bm{\mathrm{ }}\frac{\operatorname{m}^2\operatorname{s}}{\operatorname{K}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}\operatorname{K}} = 254.501\cdot10^{-10} $&
$1\:\text{} \frac1{L\Theta}=1 = 2004.41\,\bm{\mathrm{ }}\frac1{\operatorname{m}\operatorname{K}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}\operatorname{s}\operatorname{K}} = 33.2200\cdot10^{-140} $\quad(*)&
$1\:\text{ni'upavo-} \frac1{LT\Theta}=10^{-140} = 0.0140332\,\bm{\mathrm{ }}\frac1{\operatorname{m}\operatorname{s}\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}\operatorname{s}^2\operatorname{K}} = 4.14053\cdot10^{-310} $&
$1\:\text{ni'ucipa-} \frac1{LT^2\Theta}=10^{-310} = 0.122240\,\bm{\mathrm{ }}\frac1{\operatorname{m}\operatorname{s}^2\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{s}}{\operatorname{m}\operatorname{K}} = 2245.40\cdot10^{120} $&
$1\:\text{paci-} \frac{T}{L\Theta}=10^{130} = 223.232\,\bm{\mathrm{ }}\frac{\operatorname{s}}{\operatorname{m}\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}^2\operatorname{K}} = 2.54014\cdot10^{-120} $&
$1\:\text{ni'upare-} \frac1{L^2\Theta}=10^{-120} = 0.201155\,\bm{\mathrm{ }}\frac1{\operatorname{m}^2\operatorname{K}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}^2\operatorname{s}\operatorname{K}} = 0.331214\cdot10^{-250} $&
$1\:\text{ni'uremu-} \frac1{L^2T\Theta}=10^{-250} = 1.41014\,\bm{\mathrm{ }}\frac1{\operatorname{m}^2\operatorname{s}\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}^2\operatorname{s}^2\operatorname{K}} = 0.0413002\cdot10^{-420} $\quad(*)&
$1\:\text{ni'uvore-} \frac1{L^2T^2\Theta}=10^{-420} = 12.2453\,\bm{\mathrm{ }}\frac1{\operatorname{m}^2\operatorname{s}^2\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{s}}{\operatorname{m}^2\operatorname{K}} = 22.4141\cdot10^{10} $&
$1\:\text{pa-} \frac{T}{L^2\Theta}=10^{10} = 0.0224025\,\bm{\mathrm{ }}\frac{\operatorname{s}}{\operatorname{m}^2\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}^3\operatorname{K}} = 0.0253132\cdot10^{-230} $&
$1\:\text{ni'ureci-} \frac1{L^3\Theta}=10^{-230} = 20.1513\,\bm{\mathrm{ }}\frac1{\operatorname{m}^3\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}^3\operatorname{s}\operatorname{K}} = 0.00330234\cdot10^{-400} $&
$1\:\text{ni'uvono-} \frac1{L^3T\Theta}=10^{-400} = 141.300\,\bm{\mathrm{ }}\frac1{\operatorname{m}^3\operatorname{s}\operatorname{K}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac1{\operatorname{m}^3\operatorname{s}^2\operatorname{K}} = 411.513\cdot10^{-540} $&
$1\:\text{ni'umuvo-} \frac1{L^3T^2\Theta}=10^{-540} = 0.00123111\,\bm{\mathrm{ }}\frac1{\operatorname{m}^3\operatorname{s}^2\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{s}}{\operatorname{m}^3\operatorname{K}} = 0.223344\cdot10^{-100} $&
$1\:\text{ni'upano-} \frac{T}{L^3\Theta}=10^{-100} = 2.24423\,\bm{\mathrm{ }}\frac{\operatorname{s}}{\operatorname{m}^3\operatorname{K}}$\\
\arrayrulecolor{light-gray}\hline
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{K}} = 1201.54\cdot10^{120} $&
$1\:\text{paci-} \frac{M}{\Theta}=10^{130} = 424.531\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{s}\operatorname{K}} = 134.014\cdot10^{-10} $&
$1\:\text{} \frac{M}{T\Theta}=1 = 3415.45\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{s}\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{s}^2\operatorname{K}} = 15.3420\cdot10^{-140} $&
$1\:\text{ni'upavo-} \frac{M}{T^2\Theta}=10^{-140} = 0.0303310\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{s}^2\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}}{\operatorname{K}} = 0.0104121\cdot10^{300} $&
$1\:\text{cino-} \frac{MT}{\Theta}=10^{300} = 52.1144\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}}{\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}}{\operatorname{K}} = 0.120404\cdot10^{240} $&
$1\:\text{revo-} \frac{ML}{\Theta}=10^{240} = 4.23421\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}}{\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}}{\operatorname{s}\operatorname{K}} = 0.0134251\cdot10^{110} $&
$1\:\text{papa-} \frac{ML}{T\Theta}=10^{110} = 34.0550\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}}{\operatorname{s}\operatorname{K}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}}{\operatorname{s}^2\operatorname{K}} = 0.00154124\cdot10^{-20} $&
$1\:\text{ni'ure-} \frac{ML}{T^2\Theta}=10^{-20} = 302.412\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}}{\operatorname{s}^2\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}\operatorname{s}}{\operatorname{K}} = 1.04310\cdot10^{410} $&
$1\:\text{vopa-} \frac{MLT}{\Theta}=10^{410} = 0.515510\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}\operatorname{s}}{\operatorname{K}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2}{\operatorname{K}} = 12.1014\cdot10^{350} $&
$1\:\text{cimu-} \frac{ML^2}{\Theta}=10^{350} = 0.0422313\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2}{\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2}{\operatorname{s}\operatorname{K}} = 1.34525\cdot10^{220} $&
$1\:\text{rere-} \frac{ML^2}{T\Theta}=10^{220} = 0.335554\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2}{\operatorname{s}\operatorname{K}}$\quad(**)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2}{\operatorname{s}^2\operatorname{K}} = 0.154434\cdot10^{50} $&
$1\:\text{mu-} \frac{ML^2}{T^2\Theta}=10^{50} = 3.01514\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2}{\operatorname{s}^2\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2\operatorname{s}}{\operatorname{K}} = 104.500\cdot10^{520} $\quad(*)&
$1\:\text{mure-} \frac{ML^2T}{\Theta}=10^{520} = 0.00514235\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2\operatorname{s}}{\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}\operatorname{K}} = 11.5544\cdot10^{10} $\quad(*)&
$1\:\text{pa-} \frac{M}{L\Theta}=10^{10} = 0.0430042\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}\operatorname{K}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}\operatorname{s}\operatorname{K}} = 1.33341\cdot10^{-120} $&
$1\:\text{ni'upare-} \frac{M}{LT\Theta}=10^{-120} = 0.342545\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}\operatorname{s}\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}\operatorname{s}^2\operatorname{K}} = 0.153112\cdot10^{-250} $&
$1\:\text{ni'uremu-} \frac{M}{LT^2\Theta}=10^{-250} = 3.04210\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}\operatorname{s}^2\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}}{\operatorname{m}\operatorname{K}} = 103.533\cdot10^{140} $&
$1\:\text{pavo-} \frac{MT}{L\Theta}=10^{140} = 0.00522424\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}}{\operatorname{m}\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^2\operatorname{K}} = 0.115335\cdot10^{-100} $&
$1\:\text{ni'upano-} \frac{M}{L^2\Theta}=10^{-100} = 4.31200\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^2\operatorname{K}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^2\operatorname{s}\operatorname{K}} = 0.0133104\cdot10^{-230} $&
$1\:\text{ni'ureci-} \frac{M}{L^2T\Theta}=10^{-230} = 34.3550\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^2\operatorname{s}\operatorname{K}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^2\operatorname{s}^2\operatorname{K}} = 0.00152410\cdot10^{-400} $&
$1\:\text{ni'uvono-} \frac{M}{L^2T^2\Theta}=10^{-400} = 305.111\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^2\operatorname{s}^2\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}}{\operatorname{m}^2\operatorname{K}} = 1.03345\cdot10^{30} $&
$1\:\text{ci-} \frac{MT}{L^2\Theta}=10^{30} = 0.524110\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}}{\operatorname{m}^2\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^3\operatorname{K}} = 1151.31\cdot10^{-220} $&
$1\:\text{ni'urepa-} \frac{M}{L^3\Theta}=10^{-210} = 432.315\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^3\operatorname{K}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^3\operatorname{s}\operatorname{K}} = 132.433\cdot10^{-350} $&
$1\:\text{ni'ucivo-} \frac{M}{L^3T\Theta}=10^{-340} = 3445.54\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^3\operatorname{s}\operatorname{K}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^3\operatorname{s}^2\operatorname{K}} = 15.2104\cdot10^{-520} $&
$1\:\text{ni'umure-} \frac{M}{L^3T^2\Theta}=10^{-520} = 0.0310014\,\bm{\mathrm{ }}\frac{\operatorname{kg}}{\operatorname{m}^3\operatorname{s}^2\operatorname{K}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}}{\operatorname{m}^3\operatorname{K}} = 0.0103202\cdot10^{-40} $&
$1\:\text{ni'uvo-} \frac{MT}{L^3\Theta}=10^{-40} = 52.5354\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}}{\operatorname{m}^3\operatorname{K}}$\\
\arrayrulecolor{black}\hline
\arrayrulecolor{gray}\hline
\arrayrulecolor{light-gray}\hline
$1 \bm{\mathrm{ }}\operatorname{K} = 20.0125\cdot10^{-110} $\quad(*)&
$1\:\text{ni'upapa-} \Theta=10^{-110} = 0.0255345\,\bm{\mathrm{ }}\operatorname{K}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{s}} = 2.22440\cdot10^{-240} $&
$1\:\text{ni'urevo-} \frac{\Theta}{T}=10^{-240} = 0.225335\,\bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{s}^2} = 0.252124\cdot10^{-410} $&
$1\:\text{ni'uvopa-} \frac{\Theta}{T^2}=10^{-410} = 2.02333\,\bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\operatorname{s}\operatorname{K} = 140.051\cdot10^{20} $\quad(*)&
$1\:\text{re-} T\Theta=10^{20} = 0.00333143\,\bm{\mathrm{ }}\operatorname{s}\operatorname{K}$\\
$1 \bm{\mathrm{ }}\operatorname{m}\operatorname{K} = 2004.41\cdot10^{0} $\quad(*)&
$1\:\text{pa-} L\Theta=10^{10} = 254.501\,\bm{\mathrm{ }}\operatorname{m}\operatorname{K}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}\operatorname{K}}{\operatorname{s}} = 223.232\cdot10^{-130} $&
$1\:\text{ni'upare-} \frac{L\Theta}{T}=10^{-120} = 2245.40\,\bm{\mathrm{ }}\frac{\operatorname{m}\operatorname{K}}{\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}\operatorname{K}}{\operatorname{s}^2} = 25.3004\cdot10^{-300} $\quad(*)&
$1\:\text{ni'ucino-} \frac{L\Theta}{T^2}=10^{-300} = 0.0202014\,\bm{\mathrm{ }}\frac{\operatorname{m}\operatorname{K}}{\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\operatorname{m}\operatorname{s}\operatorname{K} = 0.0140332\cdot10^{140} $&
$1\:\text{pavo-} LT\Theta=10^{140} = 33.2200\,\bm{\mathrm{ }}\operatorname{m}\operatorname{s}\operatorname{K}$\quad(*)\\
$1 \bm{\mathrm{ }}\operatorname{m}^2\operatorname{K} = 0.201155\cdot10^{120} $\quad(*)&
$1\:\text{pare-} L^2\Theta=10^{120} = 2.54014\,\bm{\mathrm{ }}\operatorname{m}^2\operatorname{K}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}^2\operatorname{K}}{\operatorname{s}} = 0.0224025\cdot10^{-10} $&
$1\:\text{ni'upa-} \frac{L^2\Theta}{T}=10^{-10} = 22.4141\,\bm{\mathrm{ }}\frac{\operatorname{m}^2\operatorname{K}}{\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}^2\operatorname{K}}{\operatorname{s}^2} = 0.00253445\cdot10^{-140} $&
$1\:\text{ni'upavo-} \frac{L^2\Theta}{T^2}=10^{-140} = 201.255\,\bm{\mathrm{ }}\frac{\operatorname{m}^2\operatorname{K}}{\operatorname{s}^2}$\quad(*)\\
$1 \bm{\mathrm{ }}\operatorname{m}^2\operatorname{s}\operatorname{K} = 1.41014\cdot10^{250} $&
$1\:\text{remu-} L^2T\Theta=10^{250} = 0.331214\,\bm{\mathrm{ }}\operatorname{m}^2\operatorname{s}\operatorname{K}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}} = 0.155413\cdot10^{-220} $\quad(*)&
$1\:\text{ni'urere-} \frac{\Theta}{L}=10^{-220} = 3.00235\,\bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}\operatorname{s}} = 0.0222050\cdot10^{-350} $&
$1\:\text{ni'ucimu-} \frac{\Theta}{LT}=10^{-350} = 23.0135\,\bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}\operatorname{s}^2} = 0.00251245\cdot10^{-520} $&
$1\:\text{ni'umure-} \frac{\Theta}{LT^2}=10^{-520} = 203.053\,\bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{K}}{\operatorname{m}} = 1.35411\cdot10^{-50} $&
$1\:\text{ni'umu-} \frac{T\Theta}{L}=10^{-50} = 0.334131\,\bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{K}}{\operatorname{m}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}^2} = 1551.02\cdot10^{-340} $\quad(*)&
$1\:\text{ni'ucici-} \frac{\Theta}{L^2}=10^{-330} = 301.125\,\bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}^2\operatorname{s}} = 221.300\cdot10^{-510} $\quad(*)&
$1\:\text{ni'umuno-} \frac{\Theta}{L^2T}=10^{-500} = 2305.41\,\bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}^2\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}^2\operatorname{s}^2} = 25.0411\cdot10^{-1040} $&
$1\:\text{ni'upanovo-} \frac{\Theta}{L^2T^2}=10^{-1040} = 0.0203415\,\bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}^2\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{K}}{\operatorname{m}^2} = 0.0135131\cdot10^{-200} $&
$1\:\text{ni'ureno-} \frac{T\Theta}{L^2}=10^{-200} = 33.5121\,\bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{K}}{\operatorname{m}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}^3} = 15.4352\cdot10^{-450} $&
$1\:\text{ni'uvomu-} \frac{\Theta}{L^3}=10^{-450} = 0.0302022\,\bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}^3}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}^3\operatorname{s}} = 2.20511\cdot10^{-1020} $&
$1\:\text{ni'upanore-} \frac{\Theta}{L^3T}=10^{-1020} = 0.231344\,\bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}^3\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}^3\operatorname{s}^2} = 0.245535\cdot10^{-1150} $\quad(*)&
$1\:\text{ni'upapamu-} \frac{\Theta}{L^3T^2}=10^{-1150} = 2.04141\,\bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}^3\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{K}}{\operatorname{m}^3} = 134.452\cdot10^{-320} $&
$1\:\text{ni'ucire-} \frac{T\Theta}{L^3}=10^{-320} = 0.00340113\,\bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{K}}{\operatorname{m}^3}$\\
\arrayrulecolor{light-gray}\hline
$1 \bm{\mathrm{ }}\operatorname{kg}\operatorname{K} = 0.522334\cdot10^{-50} $&
$1\:\text{ni'umu-} M\Theta=10^{-50} = 1.03543\,\bm{\mathrm{ }}\operatorname{kg}\operatorname{K}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{s}} = 0.102543\cdot10^{-220} $&
$1\:\text{ni'urere-} \frac{M\Theta}{T}=10^{-220} = 5.31332\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{s}^2} = 0.0114444\cdot10^{-350} $&
$1\:\text{ni'ucimu-} \frac{M\Theta}{T^2}=10^{-350} = 43.4055\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{s}^2}$\quad(*)\\
$1 \bm{\mathrm{ }}\operatorname{kg}\operatorname{s}\operatorname{K} = 4.30002\cdot10^{40} $\quad(**)&
$1\:\text{vo-} MT\Theta=10^{40} = 0.115555\,\bm{\mathrm{ }}\operatorname{kg}\operatorname{s}\operatorname{K}$\quad(***)\\
$1 \bm{\mathrm{ }}\operatorname{kg}\operatorname{m}\operatorname{K} = 52.4020\cdot10^{20} $&
$1\:\text{re-} ML\Theta=10^{20} = 0.0103355\,\bm{\mathrm{ }}\operatorname{kg}\operatorname{m}\operatorname{K}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}\operatorname{K}}{\operatorname{s}} = 10.3130\cdot10^{-110} $&
$1\:\text{ni'upapa-} \frac{ML\Theta}{T}=10^{-110} = 0.0530040\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}\operatorname{K}}{\operatorname{s}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}\operatorname{K}}{\operatorname{s}^2} = 1.15052\cdot10^{-240} $&
$1\:\text{ni'urevo-} \frac{ML\Theta}{T^2}=10^{-240} = 0.432533\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}\operatorname{K}}{\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\operatorname{kg}\operatorname{m}\operatorname{s}\operatorname{K} = 431.115\cdot10^{150} $&
$1\:\text{reno-} MLT\Theta=10^{200} = 1153.51\,\bm{\mathrm{ }}\operatorname{kg}\operatorname{m}\operatorname{s}\operatorname{K}$\\
$1 \bm{\mathrm{ }}\operatorname{kg}\operatorname{m}^2\operatorname{K} = 0.00525304\cdot10^{140} $&
$1\:\text{pavo-} ML^2\Theta=10^{140} = 103.212\,\bm{\mathrm{ }}\operatorname{kg}\operatorname{m}^2\operatorname{K}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2\operatorname{K}}{\operatorname{s}} = 1033.13\cdot10^{0} $&
$1\:\text{pa-} \frac{ML^2\Theta}{T}=10^{10} = 524.351\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2\operatorname{K}}{\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2\operatorname{K}}{\operatorname{s}^2} = 115.300\cdot10^{-130} $\quad(*)&
$1\:\text{ni'upare-} \frac{ML^2\Theta}{T^2}=10^{-120} = 4314.13\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2\operatorname{K}}{\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\operatorname{kg}\operatorname{m}^2\operatorname{s}\operatorname{K} = 0.0432234\cdot10^{310} $&
$1\:\text{cipa-} ML^2T\Theta=10^{310} = 11.5142\,\bm{\mathrm{ }}\operatorname{kg}\operatorname{m}^2\operatorname{s}\operatorname{K}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}} = 0.00521055\cdot10^{-200} $\quad(*)&
$1\:\text{ni'ureno-} \frac{M\Theta}{L}=10^{-200} = 104.131\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}\operatorname{s}} = 1024.01\cdot10^{-340} $&
$1\:\text{ni'ucici-} \frac{M\Theta}{LT}=10^{-330} = 533.030\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}\operatorname{s}^2} = 114.241\cdot10^{-510} $&
$1\:\text{ni'umuno-} \frac{M\Theta}{LT^2}=10^{-500} = 4352.23\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{K}}{\operatorname{m}} = 0.0424451\cdot10^{-30} $&
$1\:\text{ni'uci-} \frac{MT\Theta}{L}=10^{-30} = 12.0205\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{K}}{\operatorname{m}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}^2} = 51.5422\cdot10^{-320} $&
$1\:\text{ni'ucire-} \frac{M\Theta}{L^2}=10^{-320} = 0.0104320\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}^2\operatorname{s}} = 10.2215\cdot10^{-450} $&
$1\:\text{ni'uvomu-} \frac{M\Theta}{L^2T}=10^{-450} = 0.0534330\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}^2\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}^2\operatorname{s}^2} = 1.14035\cdot10^{-1020} $&
$1\:\text{ni'upanore-} \frac{M\Theta}{L^2T^2}=10^{-1020} = 0.440353\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}^2\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{K}}{\operatorname{m}^2} = 423.341\cdot10^{-150} $&
$1\:\text{ni'upavo-} \frac{MT\Theta}{L^2}=10^{-140} = 1204.15\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{K}}{\operatorname{m}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}^3} = 0.514151\cdot10^{-430} $&
$1\:\text{ni'uvoci-} \frac{M\Theta}{L^3}=10^{-430} = 1.04510\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}^3}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}^3\operatorname{s}} = 0.102034\cdot10^{-1000} $&
$1\:\text{ni'upanono-} \frac{M\Theta}{L^3T}=10^{-1000} = 5.40033\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}^3\operatorname{s}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}^3\operatorname{s}^2} = 0.0113433\cdot10^{-1130} $&
$1\:\text{ni'upapaci-} \frac{M\Theta}{L^3T^2}=10^{-1130} = 44.1525\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}^3\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{K}}{\operatorname{m}^3} = 4.22234\cdot10^{-300} $&
$1\:\text{ni'ucino-} \frac{MT\Theta}{L^3}=10^{-300} = 0.121025\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{K}}{\operatorname{m}^3}$\\
\arrayrulecolor{gray}\hline
\arrayrulecolor{light-gray}\hline
$1 \bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{C}} = 50.1041\cdot10^{-150} $&
$1\:\text{ni'upamu-} \frac{\Theta}{Q}=10^{-150} = 0.0110534\,\bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{s}\operatorname{C}} = 10.0132\cdot10^{-320} $\quad(*)&
$1\:\text{ni'ucire-} \frac{\Theta}{TQ}=10^{-320} = 0.0554242\,\bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{s}\operatorname{C}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{s}^2\operatorname{C}} = 1.11320\cdot10^{-450} $&
$1\:\text{ni'uvomu-} \frac{\Theta}{T^2Q}=10^{-450} = 0.454312\,\bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{s}^2\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{K}}{\operatorname{C}} = 410.441\cdot10^{-20} $&
$1\:\text{ni'ure-} \frac{T\Theta}{Q}=10^{-20} = 0.00123323\,\bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{K}}{\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}\operatorname{K}}{\operatorname{C}} = 5022.45\cdot10^{-40} $&
$1\:\text{ni'uci-} \frac{L\Theta}{Q}=10^{-30} = 110.341\,\bm{\mathrm{ }}\frac{\operatorname{m}\operatorname{K}}{\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}\operatorname{K}}{\operatorname{s}\operatorname{C}} = 0.00100310\cdot10^{-200} $\quad(*)&
$1\:\text{ni'ureno-} \frac{L\Theta}{TQ}=10^{-200} = 552.511\,\bm{\mathrm{ }}\frac{\operatorname{m}\operatorname{K}}{\operatorname{s}\operatorname{C}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}\operatorname{K}}{\operatorname{s}^2\operatorname{C}} = 111.514\cdot10^{-340} $&
$1\:\text{ni'ucivo-} \frac{L\Theta}{T^2Q}=10^{-340} = 0.00453114\,\bm{\mathrm{ }}\frac{\operatorname{m}\operatorname{K}}{\operatorname{s}^2\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}\operatorname{s}\operatorname{K}}{\operatorname{C}} = 0.0411524\cdot10^{100} $&
$1\:\text{pano-} \frac{LT\Theta}{Q}=10^{100} = 12.3105\,\bm{\mathrm{ }}\frac{\operatorname{m}\operatorname{s}\operatorname{K}}{\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}^2\operatorname{K}}{\operatorname{C}} = 0.503455\cdot10^{40} $\quad(*)&
$1\:\text{vo-} \frac{L^2\Theta}{Q}=10^{40} = 1.10145\,\bm{\mathrm{ }}\frac{\operatorname{m}^2\operatorname{K}}{\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}^2\operatorname{K}}{\operatorname{s}\operatorname{C}} = 0.100445\cdot10^{-50} $\quad(*)&
$1\:\text{ni'umu-} \frac{L^2\Theta}{TQ}=10^{-50} = 5.51142\,\bm{\mathrm{ }}\frac{\operatorname{m}^2\operatorname{K}}{\operatorname{s}\operatorname{C}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}^2\operatorname{K}}{\operatorname{s}^2\operatorname{C}} = 0.0112113\cdot10^{-220} $&
$1\:\text{ni'urere-} \frac{L^2\Theta}{T^2Q}=10^{-220} = 45.1522\,\bm{\mathrm{ }}\frac{\operatorname{m}^2\operatorname{K}}{\operatorname{s}^2\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}^2\operatorname{s}\operatorname{K}}{\operatorname{C}} = 4.13013\cdot10^{210} $&
$1\:\text{repa-} \frac{L^2T\Theta}{Q}=10^{210} = 0.122451\,\bm{\mathrm{ }}\frac{\operatorname{m}^2\operatorname{s}\operatorname{K}}{\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}\operatorname{C}} = 0.455435\cdot10^{-300} $\quad(*)&
$1\:\text{ni'ucino-} \frac{\Theta}{LQ}=10^{-300} = 1.11131\,\bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}\operatorname{s}\operatorname{C}} = 0.0555540\cdot10^{-430} $\quad(***)&
$1\:\text{ni'uvoci-} \frac{\Theta}{LTQ}=10^{-430} = 10.0002\,\bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}\operatorname{s}\operatorname{C}}$\quad(***)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}\operatorname{s}^2\operatorname{C}} = 0.0111122\cdot10^{-1000} $&
$1\:\text{ni'upanono-} \frac{\Theta}{LT^2Q}=10^{-1000} = 45.5512\,\bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}\operatorname{s}^2\operatorname{C}}$\quad(**)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{K}}{\operatorname{m}\operatorname{C}} = 4.05355\cdot10^{-130} $\quad(*)&
$1\:\text{ni'upaci-} \frac{T\Theta}{LQ}=10^{-130} = 0.123543\,\bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{K}}{\operatorname{m}\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}^2\operatorname{C}} = 4542.40\cdot10^{-420} $&
$1\:\text{ni'uvopa-} \frac{\Theta}{L^2Q}=10^{-410} = 111.325\,\bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}^2\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}^2\operatorname{s}\operatorname{C}} = 554.202\cdot10^{-550} $\quad(*)&
$1\:\text{ni'umuvo-} \frac{\Theta}{L^2TQ}=10^{-540} = 1001.40\,\bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}^2\operatorname{s}\operatorname{C}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}^2\operatorname{s}^2\operatorname{C}} = 110.525\cdot10^{-1120} $&
$1\:\text{ni'upapare-} \frac{\Theta}{L^2T^2Q}=10^{-1120} = 0.00501114\,\bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}^2\operatorname{s}^2\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{K}}{\operatorname{m}^2\operatorname{C}} = 0.0404320\cdot10^{-240} $&
$1\:\text{ni'urevo-} \frac{T\Theta}{L^2Q}=10^{-240} = 12.4202\,\bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{K}}{\operatorname{m}^2\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}^3\operatorname{C}} = 45.3042\cdot10^{-530} $&
$1\:\text{ni'umuci-} \frac{\Theta}{L^3Q}=10^{-530} = 0.0111523\,\bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}^3\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}^3\operatorname{s}\operatorname{C}} = 5.52431\cdot10^{-1100} $\quad(*)&
$1\:\text{ni'upapano-} \frac{\Theta}{L^3TQ}=10^{-1100} = 0.100315\,\bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}^3\operatorname{s}\operatorname{C}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}^3\operatorname{s}^2\operatorname{C}} = 1.10332\cdot10^{-1230} $&
$1\:\text{ni'upareci-} \frac{\Theta}{L^3T^2Q}=10^{-1230} = 0.502322\,\bm{\mathrm{ }}\frac{\operatorname{K}}{\operatorname{m}^3\operatorname{s}^2\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{K}}{\operatorname{m}^3\operatorname{C}} = 403.242\cdot10^{-400} $&
$1\:\text{ni'uvono-} \frac{T\Theta}{L^3Q}=10^{-400} = 0.00124423\,\bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{K}}{\operatorname{m}^3\operatorname{C}}$\\
\arrayrulecolor{light-gray}\hline
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{C}} = 2.13151\cdot10^{-130} $&
$1\:\text{ni'upaci-} \frac{M\Theta}{Q}=10^{-130} = 0.235344\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{s}\operatorname{C}} = 0.241401\cdot10^{-300} $&
$1\:\text{ni'ucino-} \frac{M\Theta}{TQ}=10^{-300} = 2.11341\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{s}\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{s}^2\operatorname{C}} = 0.0313154\cdot10^{-430} $&
$1\:\text{ni'uvoci-} \frac{M\Theta}{T^2Q}=10^{-430} = 15.0140\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{s}^2\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{K}}{\operatorname{C}} = 15.1410\cdot10^{0} $&
$1\:\text{} \frac{MT\Theta}{Q}=1 = 0.0310512\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{K}}{\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}\operatorname{K}}{\operatorname{C}} = 213.530\cdot10^{-20} $&
$1\:\text{ni'ure-} \frac{ML\Theta}{Q}=10^{-20} = 0.00234531\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}\operatorname{K}}{\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}\operatorname{K}}{\operatorname{s}\operatorname{C}} = 24.2222\cdot10^{-150} $&
$1\:\text{ni'upamu-} \frac{ML\Theta}{TQ}=10^{-150} = 0.0211005\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}\operatorname{K}}{\operatorname{s}\operatorname{C}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}\operatorname{K}}{\operatorname{s}^2\operatorname{C}} = 3.14111\cdot10^{-320} $&
$1\:\text{ni'ucire-} \frac{ML\Theta}{T^2Q}=10^{-320} = 0.145442\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}\operatorname{K}}{\operatorname{s}^2\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}\operatorname{s}\operatorname{K}}{\operatorname{C}} = 0.00152111\cdot10^{120} $&
$1\:\text{pare-} \frac{MLT\Theta}{Q}=10^{120} = 310.005\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}\operatorname{s}\operatorname{K}}{\operatorname{C}}$\quad(**)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2\operatorname{K}}{\operatorname{C}} = 0.0214311\cdot10^{100} $&
$1\:\text{pano-} \frac{ML^2\Theta}{Q}=10^{100} = 23.4115\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2\operatorname{K}}{\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2\operatorname{K}}{\operatorname{s}\operatorname{C}} = 2430.45\cdot10^{-40} $&
$1\:\text{ni'uci-} \frac{ML^2\Theta}{TQ}=10^{-30} = 210.235\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2\operatorname{K}}{\operatorname{s}\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2\operatorname{K}}{\operatorname{s}^2\operatorname{C}} = 315.025\cdot10^{-210} $&
$1\:\text{ni'ureno-} \frac{ML^2\Theta}{T^2Q}=10^{-200} = 1451.45\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2\operatorname{K}}{\operatorname{s}^2\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2\operatorname{s}\operatorname{K}}{\operatorname{C}} = 0.152413\cdot10^{230} $&
$1\:\text{reci-} \frac{ML^2T\Theta}{Q}=10^{230} = 3.05102\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2\operatorname{s}\operatorname{K}}{\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}\operatorname{C}} = 0.0212413\cdot10^{-240} $&
$1\:\text{ni'urevo-} \frac{M\Theta}{LQ}=10^{-240} = 24.0203\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}\operatorname{s}\operatorname{C}} = 2405.41\cdot10^{-420} $&
$1\:\text{ni'uvopa-} \frac{M\Theta}{LTQ}=10^{-410} = 212.113\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}\operatorname{s}\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}\operatorname{s}^2\operatorname{C}} = 312.242\cdot10^{-550} $&
$1\:\text{ni'umuvo-} \frac{M\Theta}{LT^2Q}=10^{-540} = 1504.35\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}\operatorname{s}^2\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{K}}{\operatorname{m}\operatorname{C}} = 0.151105\cdot10^{-110} $&
$1\:\text{ni'upapa-} \frac{MT\Theta}{LQ}=10^{-110} = 3.11422\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{K}}{\operatorname{m}\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}^2\operatorname{C}} = 212.040\cdot10^{-400} $&
$1\:\text{ni'uvono-} \frac{M\Theta}{L^2Q}=10^{-400} = 0.00241022\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}^2\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}^2\operatorname{s}\operatorname{C}} = 24.0121\cdot10^{-530} $&
$1\:\text{ni'umuci-} \frac{M\Theta}{L^2TQ}=10^{-530} = 0.0212450\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}^2\operatorname{s}\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}^2\operatorname{s}^2\operatorname{C}} = 3.11331\cdot10^{-1100} $&
$1\:\text{ni'upapano-} \frac{M\Theta}{L^2T^2Q}=10^{-1100} = 0.151135\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}^2\operatorname{s}^2\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{K}}{\operatorname{m}^2\operatorname{C}} = 0.00150410\cdot10^{-220} $&
$1\:\text{ni'urere-} \frac{MT\Theta}{L^2Q}=10^{-220} = 312.332\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{K}}{\operatorname{m}^2\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}^3\operatorname{C}} = 2.11304\cdot10^{-510} $&
$1\:\text{ni'umupa-} \frac{M\Theta}{L^3Q}=10^{-510} = 0.241443\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}^3\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}^3\operatorname{s}\operatorname{C}} = 0.235303\cdot10^{-1040} $&
$1\:\text{ni'upanovo-} \frac{M\Theta}{L^3TQ}=10^{-1040} = 2.13225\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}^3\operatorname{s}\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}^3\operatorname{s}^2\operatorname{C}} = 0.0310422\cdot10^{-1210} $&
$1\:\text{ni'uparepa-} \frac{M\Theta}{L^3T^2Q}=10^{-1210} = 15.1435\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{K}}{\operatorname{m}^3\operatorname{s}^2\operatorname{C}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{K}}{\operatorname{m}^3\operatorname{C}} = 15.0111\cdot10^{-340} $&
$1\:\text{ni'ucivo-} \frac{MT\Theta}{L^3Q}=10^{-340} = 0.0313244\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{K}}{\operatorname{m}^3\operatorname{C}}$\\
\arrayrulecolor{gray}\hline
\arrayrulecolor{light-gray}\hline
$1 \bm{\mathrm{ }}\operatorname{C}\operatorname{K} = 4.44523\cdot10^{-30} $&
$1\:\text{ni'uci-} Q\Theta=10^{-30} = 0.112550\,\bm{\mathrm{ }}\operatorname{C}\operatorname{K}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{C}\operatorname{K}}{\operatorname{s}} = 0.543405\cdot10^{-200} $&
$1\:\text{ni'ureno-} \frac{Q\Theta}{T}=10^{-200} = 1.01235\,\bm{\mathrm{ }}\frac{\operatorname{C}\operatorname{K}}{\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{C}\operatorname{K}}{\operatorname{s}^2} = 0.105325\cdot10^{-330} $&
$1\:\text{ni'ucici-} \frac{Q\Theta}{T^2}=10^{-330} = 5.11003\,\bm{\mathrm{ }}\frac{\operatorname{C}\operatorname{K}}{\operatorname{s}^2}$\quad(*)\\
$1 \bm{\mathrm{ }}\operatorname{s}\operatorname{C}\operatorname{K} = 35.5540\cdot10^{100} $\quad(**)&
$1\:\text{pano-} TQ\Theta=10^{100} = 0.0130005\,\bm{\mathrm{ }}\operatorname{s}\operatorname{C}\operatorname{K}$\quad(**)\\
$1 \bm{\mathrm{ }}\operatorname{m}\operatorname{C}\operatorname{K} = 450.110\cdot10^{40} $&
$1\:\text{vo-} LQ\Theta=10^{40} = 0.00112350\,\bm{\mathrm{ }}\operatorname{m}\operatorname{C}\operatorname{K}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}\operatorname{C}\operatorname{K}}{\operatorname{s}} = 54.5124\cdot10^{-50} $&
$1\:\text{ni'umu-} \frac{LQ\Theta}{T}=10^{-50} = 0.0101055\,\bm{\mathrm{ }}\frac{\operatorname{m}\operatorname{C}\operatorname{K}}{\operatorname{s}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}\operatorname{C}\operatorname{K}}{\operatorname{s}^2} = 10.5520\cdot10^{-220} $\quad(*)&
$1\:\text{ni'urere-} \frac{LQ\Theta}{T^2}=10^{-220} = 0.0505344\,\bm{\mathrm{ }}\frac{\operatorname{m}\operatorname{C}\operatorname{K}}{\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\operatorname{m}\operatorname{s}\operatorname{C}\operatorname{K} = 0.00401004\cdot10^{220} $\quad(*)&
$1\:\text{rere-} LTQ\Theta=10^{220} = 125.342\,\bm{\mathrm{ }}\operatorname{m}\operatorname{s}\operatorname{C}\operatorname{K}$\\
$1 \bm{\mathrm{ }}\operatorname{m}^2\operatorname{C}\operatorname{K} = 0.0451255\cdot10^{200} $\quad(*)&
$1\:\text{reno-} L^2Q\Theta=10^{200} = 11.2151\,\bm{\mathrm{ }}\operatorname{m}^2\operatorname{C}\operatorname{K}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}^2\operatorname{C}\operatorname{K}}{\operatorname{s}} = 5504.45\cdot10^{20} $\quad(*)&
$1\:\text{ci-} \frac{L^2Q\Theta}{T}=10^{30} = 100.520\,\bm{\mathrm{ }}\frac{\operatorname{m}^2\operatorname{C}\operatorname{K}}{\operatorname{s}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{m}^2\operatorname{C}\operatorname{K}}{\operatorname{s}^2} = 0.00110112\cdot10^{-100} $&
$1\:\text{ni'upano-} \frac{L^2Q\Theta}{T^2}=10^{-100} = 504.131\,\bm{\mathrm{ }}\frac{\operatorname{m}^2\operatorname{C}\operatorname{K}}{\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\operatorname{m}^2\operatorname{s}\operatorname{C}\operatorname{K} = 0.402034\cdot10^{330} $&
$1\:\text{cici-} L^2TQ\Theta=10^{330} = 1.25120\,\bm{\mathrm{ }}\operatorname{m}^2\operatorname{s}\operatorname{C}\operatorname{K}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{C}\operatorname{K}}{\operatorname{m}} = 0.0443342\cdot10^{-140} $&
$1\:\text{ni'upavo-} \frac{Q\Theta}{L}=10^{-140} = 11.3151\,\bm{\mathrm{ }}\frac{\operatorname{C}\operatorname{K}}{\operatorname{m}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{C}\operatorname{K}}{\operatorname{m}\operatorname{s}} = 5420.53\cdot10^{-320} $&
$1\:\text{ni'ucipa-} \frac{Q\Theta}{LT}=10^{-310} = 101.415\,\bm{\mathrm{ }}\frac{\operatorname{C}\operatorname{K}}{\operatorname{m}\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{C}\operatorname{K}}{\operatorname{m}\operatorname{s}^2} = 0.00105135\cdot10^{-440} $&
$1\:\text{ni'uvovo-} \frac{Q\Theta}{LT^2}=10^{-440} = 512.225\,\bm{\mathrm{ }}\frac{\operatorname{C}\operatorname{K}}{\operatorname{m}\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{C}\operatorname{K}}{\operatorname{m}} = 0.354513\cdot10^{-10} $&
$1\:\text{ni'upa-} \frac{TQ\Theta}{L}=10^{-10} = 1.30232\,\bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{C}\operatorname{K}}{\operatorname{m}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{C}\operatorname{K}}{\operatorname{m}^2} = 442.204\cdot10^{-300} $&
$1\:\text{ni'ucino-} \frac{Q\Theta}{L^2}=10^{-300} = 0.00113352\,\bm{\mathrm{ }}\frac{\operatorname{C}\operatorname{K}}{\operatorname{m}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{C}\operatorname{K}}{\operatorname{m}^2\operatorname{s}} = 54.0343\cdot10^{-430} $&
$1\:\text{ni'uvoci-} \frac{Q\Theta}{L^2T}=10^{-430} = 0.0102000\,\bm{\mathrm{ }}\frac{\operatorname{C}\operatorname{K}}{\operatorname{m}^2\operatorname{s}}$\quad(**)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{C}\operatorname{K}}{\operatorname{m}^2\operatorname{s}^2} = 10.4545\cdot10^{-1000} $&
$1\:\text{ni'upanono-} \frac{Q\Theta}{L^2T^2}=10^{-1000} = 0.0513453\,\bm{\mathrm{ }}\frac{\operatorname{C}\operatorname{K}}{\operatorname{m}^2\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{C}\operatorname{K}}{\operatorname{m}^2} = 0.00353453\cdot10^{-120} $&
$1\:\text{ni'upare-} \frac{TQ\Theta}{L^2}=10^{-120} = 130.455\,\bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{C}\operatorname{K}}{\operatorname{m}^2}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{C}\operatorname{K}}{\operatorname{m}^3} = 4.41031\cdot10^{-410} $&
$1\:\text{ni'uvopa-} \frac{Q\Theta}{L^3}=10^{-410} = 0.113553\,\bm{\mathrm{ }}\frac{\operatorname{C}\operatorname{K}}{\operatorname{m}^3}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{C}\operatorname{K}}{\operatorname{m}^3\operatorname{s}} = 0.535035\cdot10^{-540} $&
$1\:\text{ni'umuvo-} \frac{Q\Theta}{L^3T}=10^{-540} = 1.02142\,\bm{\mathrm{ }}\frac{\operatorname{C}\operatorname{K}}{\operatorname{m}^3\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{C}\operatorname{K}}{\operatorname{m}^3\operatorname{s}^2} = 0.104355\cdot10^{-1110} $\quad(*)&
$1\:\text{ni'upapapa-} \frac{Q\Theta}{L^3T^2}=10^{-1110} = 5.15123\,\bm{\mathrm{ }}\frac{\operatorname{C}\operatorname{K}}{\operatorname{m}^3\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{C}\operatorname{K}}{\operatorname{m}^3} = 35.2434\cdot10^{-240} $&
$1\:\text{ni'urevo-} \frac{TQ\Theta}{L^3}=10^{-240} = 0.0131124\,\bm{\mathrm{ }}\frac{\operatorname{s}\operatorname{C}\operatorname{K}}{\operatorname{m}^3}$\\
\arrayrulecolor{light-gray}\hline
$1 \bm{\mathrm{ }}\operatorname{kg}\operatorname{C}\operatorname{K} = 0.205343\cdot10^{-10} $&
$1\:\text{ni'upa-} MQ\Theta=10^{-10} = 2.44102\,\bm{\mathrm{ }}\operatorname{kg}\operatorname{C}\operatorname{K}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}\operatorname{K}}{\operatorname{s}} = 0.0233124\cdot10^{-140} $&
$1\:\text{ni'upavo-} \frac{MQ\Theta}{T}=10^{-140} = 21.5221\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}\operatorname{K}}{\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}\operatorname{K}}{\operatorname{s}^2} = 3040.00\cdot10^{-320} $\quad(**)&
$1\:\text{ni'ucipa-} \frac{MQ\Theta}{T^2}=10^{-310} = 153.232\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}\operatorname{K}}{\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\operatorname{kg}\operatorname{s}\operatorname{C}\operatorname{K} = 1.44343\cdot10^{120} $&
$1\:\text{pare-} MTQ\Theta=10^{120} = 0.320155\,\bm{\mathrm{ }}\operatorname{kg}\operatorname{s}\operatorname{C}\operatorname{K}$\quad(*)\\
$1 \bm{\mathrm{ }}\operatorname{kg}\operatorname{m}\operatorname{C}\operatorname{K} = 21.0112\cdot10^{100} $&
$1\:\text{pano-} MLQ\Theta=10^{100} = 0.0243233\,\bm{\mathrm{ }}\operatorname{kg}\operatorname{m}\operatorname{C}\operatorname{K}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}\operatorname{C}\operatorname{K}}{\operatorname{s}} = 2.33535\cdot10^{-30} $&
$1\:\text{ni'uci-} \frac{MLQ\Theta}{T}=10^{-30} = 0.214440\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}\operatorname{C}\operatorname{K}}{\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}\operatorname{C}\operatorname{K}}{\operatorname{s}^2} = 0.304501\cdot10^{-200} $&
$1\:\text{ni'ureno-} \frac{MLQ\Theta}{T^2}=10^{-200} = 1.52525\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}\operatorname{C}\operatorname{K}}{\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\operatorname{kg}\operatorname{m}\operatorname{s}\operatorname{C}\operatorname{K} = 145.035\cdot10^{230} $&
$1\:\text{revo-} MLTQ\Theta=10^{240} = 3152.34\,\bm{\mathrm{ }}\operatorname{kg}\operatorname{m}\operatorname{s}\operatorname{C}\operatorname{K}$\\
$1 \bm{\mathrm{ }}\operatorname{kg}\operatorname{m}^2\operatorname{C}\operatorname{K} = 0.00210442\cdot10^{220} $&
$1\:\text{rere-} ML^2Q\Theta=10^{220} = 242.410\,\bm{\mathrm{ }}\operatorname{kg}\operatorname{m}^2\operatorname{C}\operatorname{K}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2\operatorname{C}\operatorname{K}}{\operatorname{s}} = 234.350\cdot10^{40} $&
$1\:\text{vo-} \frac{ML^2Q\Theta}{T}=10^{40} = 0.00214100\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2\operatorname{C}\operatorname{K}}{\operatorname{s}}$\quad(*)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2\operatorname{C}\operatorname{K}}{\operatorname{s}^2} = 30.5403\cdot10^{-50} $&
$1\:\text{ni'umu-} \frac{ML^2Q\Theta}{T^2}=10^{-50} = 0.0152223\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{m}^2\operatorname{C}\operatorname{K}}{\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\operatorname{kg}\operatorname{m}^2\operatorname{s}\operatorname{C}\operatorname{K} = 0.0145332\cdot10^{350} $&
$1\:\text{cimu-} ML^2TQ\Theta=10^{350} = 31.4315\,\bm{\mathrm{ }}\operatorname{kg}\operatorname{m}^2\operatorname{s}\operatorname{C}\operatorname{K}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}\operatorname{K}}{\operatorname{m}} = 0.00205015\cdot10^{-120} $&
$1\:\text{ni'upare-} \frac{MQ\Theta}{L}=10^{-120} = 244.531\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}\operatorname{K}}{\operatorname{m}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}\operatorname{K}}{\operatorname{m}\operatorname{s}} = 232.315\cdot10^{-300} $&
$1\:\text{ni'ucino-} \frac{MQ\Theta}{LT}=10^{-300} = 0.00220004\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}\operatorname{K}}{\operatorname{m}\operatorname{s}}$\quad(**)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}\operatorname{K}}{\operatorname{m}\operatorname{s}^2} = 30.3101\cdot10^{-430} $&
$1\:\text{ni'uvoci-} \frac{MQ\Theta}{LT^2}=10^{-430} = 0.0153540\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}\operatorname{K}}{\operatorname{m}\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{C}\operatorname{K}}{\operatorname{m}} = 0.0144051\cdot10^{10} $&
$1\:\text{pa-} \frac{MTQ\Theta}{L}=10^{10} = 32.1121\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{C}\operatorname{K}}{\operatorname{m}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}\operatorname{K}}{\operatorname{m}^2} = 20.4251\cdot10^{-240} $&
$1\:\text{ni'urevo-} \frac{MQ\Theta}{L^2}=10^{-240} = 0.0245402\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}\operatorname{K}}{\operatorname{m}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}\operatorname{K}}{\operatorname{m}^2\operatorname{s}} = 2.31511\cdot10^{-410} $&
$1\:\text{ni'uvopa-} \frac{MQ\Theta}{L^2T}=10^{-410} = 0.220351\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}\operatorname{K}}{\operatorname{m}^2\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}\operatorname{K}}{\operatorname{m}^2\operatorname{s}^2} = 0.302203\cdot10^{-540} $&
$1\:\text{ni'umuvo-} \frac{MQ\Theta}{L^2T^2}=10^{-540} = 1.54245\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}\operatorname{K}}{\operatorname{m}^2\operatorname{s}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{C}\operatorname{K}}{\operatorname{m}^2} = 143.400\cdot10^{-110} $\quad(*)&
$1\:\text{ni'upano-} \frac{MTQ\Theta}{L^2}=10^{-100} = 3220.45\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{C}\operatorname{K}}{\operatorname{m}^2}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}\operatorname{K}}{\operatorname{m}^3} = 0.203525\cdot10^{-350} $&
$1\:\text{ni'ucimu-} \frac{MQ\Theta}{L^3}=10^{-350} = 2.50234\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}\operatorname{K}}{\operatorname{m}^3}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}\operatorname{K}}{\operatorname{m}^3\operatorname{s}} = 0.0231104\cdot10^{-520} $&
$1\:\text{ni'umure-} \frac{MQ\Theta}{L^3T}=10^{-520} = 22.1140\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}\operatorname{K}}{\operatorname{m}^3\operatorname{s}}$\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}\operatorname{K}}{\operatorname{m}^3\operatorname{s}^2} = 3013.11\cdot10^{-1100} $&
$1\:\text{ni'upanomu-} \frac{MQ\Theta}{L^3T^2}=10^{-1050} = 154.555\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{C}\operatorname{K}}{\operatorname{m}^3\operatorname{s}^2}$\quad(**)\\
$1 \bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{C}\operatorname{K}}{\operatorname{m}^3} = 1.43111\cdot10^{-220} $&
$1\:\text{ni'urere-} \frac{MTQ\Theta}{L^3}=10^{-220} = 0.323014\,\bm{\mathrm{ }}\frac{\operatorname{kg}\operatorname{s}\operatorname{C}\operatorname{K}}{\operatorname{m}^3}$\\
\end{longtable}