1
- \p 30
1
+ \p 100
2
2
3
3
alpha1(s) = return(1/(2*s) + 1/(s-1) + (1/2)*log(s/(2*Pi)));
4
4
alpha1prime(s) = return(-1/(2*s^2) - 1/(s-1)^2 + 1/(2*s));
@@ -7,63 +7,56 @@ S(N,sigmavar,t) = return(sum(n=1,N,n^(sigmavar + (t/4.0)*log(N^2/n))));
7
7
C0(p) = return((exp(Pi*I*(p^2/2 + 3/8)) - I*sqrt(2)*cos(Pi*p/2))/(2*cos(Pi*p)));
8
8
B0_eff(x,y=0.4,t=0.4) = return((1/8)*exp((t/4)*alpha1((1+y-I*x)/2)^2)*H01((1+y-I*x)/2));
9
9
10
- tail_factor1(t,th,x,n0,a) = return(2*(Pi^2)*exp(-t*th^2 - th*x - Pi*(n0^2)*cos(4*th))/(4*Pi*(n0^2)*cos(4*th) - a));
11
- tail_factor2(t,th,x,n0,a) = return(3*Pi*exp(-t*th^2 - th*x - Pi*(n0^2)*cos(4*th))/(4*Pi*(n0^2)*cos(4*th) - a));
12
- integ_tail1(t,th,X,n,a) = return(2*(Pi^2)*(n^4)*exp(-t*th^2 + t*X^2 - (Pi*n^2)*exp(4*X)*cos(4*th) - th*x + a*X)/(4*(Pi*n^2)*exp(4*X)*cos(4*th) - a - 2*t*X));
13
- integ_tail2(t,th,X,n,a) = return(3*Pi*(n^2)*exp(-t*th^2 + t*X^2 - (Pi*n^2)*exp(4*X)*cos(4*th) - th*x + a*X)/(4*(Pi*n^2)*exp(4*X)*cos(4*th) - a - 2*t*X));
14
- I_t_th(t,th,X,b,beta) = return(intnum(u=I*th,[I*th+X,Pi/8],exp(t*u^2 - beta*exp(4*u) + I*b*u)));
15
- I_t_th(t,th,X,b,beta) = return(intnum(u=I*th,I*th+X,exp(t*u^2 - beta*exp(4*u) + I*b*u)));
16
- J_t_th(t,th,X,b,beta) = return(intnum(u=I*th,I*th+X,u*exp(t*u^2 - beta*exp(4*u) + I*b*u)));
10
+ thetafunc(x,y=0.4) = return(Pi/8 - atan((9+y)/x));
11
+ alph_factor1(alph,n1) = return((n1^4)/(1-alph) + (4*n1^3)*alph/(1-alph)^2 + 6*(n1^2)*(alph^2 + alph)/(1-alph)^3 + 4*n1*(alph^3 + 4*alph^2 + alph)/(1-alph)^4 + (alph^4 + 11*alph^3 + 11*alph^2 + alph)/(1-alph)^5);
12
+ alph_factor2(alph,n1) = return((n1^2)/(1-alph) + 2*n1*alph/(1-alph)^2 + (alph^2 + alph)/(1-alph)^3);
13
+ tail_factor(t,th,x,n1,a) = return(exp(-t*th^2 - th*x - Pi*(n1^2)*cos(4*th))/(4*Pi*(n1^2)*cos(4*th) - a));
14
+ ddx_tail_factor(t,th,x,n1,a) = return(exp(-t*th^2 - th*x - Pi*(n1^2)*cos(4*th))*(th/(4*Pi*(n1^2)*cos(4*th) - a) + 1/(4*Pi*(n1^2)*cos(4*th) - a)^2));
15
+ integ_tail(t,th,X,n,a) = return(exp(-t*th^2 + t*X^2 - (Pi*n^2)*exp(4*X)*cos(4*th) - th*x + a*X)/(4*(Pi*n^2)*exp(4*X)*cos(4*th) - a - 2*t*X));
16
+ ddx_integ_tail(t,th,X,n,a) = return(exp(-t*th^2 + t*X^2 - (Pi*n^2)*exp(4*X)*cos(4*th) - th*x + a*X)*(abs(X+I*th)*4*(Pi*n^2)*exp(4*X)*cos(4*th)-a-2*t*X+ 1/(4*(Pi*n^2)*exp(4*X)*cos(4*th) - a - 2*t*X)^2));
17
+ I_t_th(t,th,X,b,beta,mstep=4) = return(intnum(u=I*th,I*th+X,exp(t*u^2 - beta*exp(4*u) + I*b*u),mstep));
18
+ J_t_th(t,th,X,b,beta,mstep=4) = return(intnum(u=I*th,I*th+X,u*exp(t*u^2 - beta*exp(4*u) + I*b*u),mstep));
19
+ Jbound_t_th(t,th,X,a,beta) = return(exp(-t*th^2)*intnum(u=0,X,(th+u)*exp(t*u^2 - beta*exp(4*u)*cos(4*th) + a*u)));
17
20
18
- Ht_int_old(x,y=0.4,t=0.4,n0=5) = return(sum(n=1,n0,intnum(u=0,2,exp(t*u^2)*cos((x+I*y)*u)*(2*(Pi^2)*(n^4)*exp(9*u) - 3*Pi*(n^2)*exp(5*u))*exp(-Pi*(n^2)*exp(4*u)))));
19
- ddx_Ht_int_old(x,y=0.4,t=0.4,n0=5) = return((I/2)*sum(n=1,n0,intnum(u=0,2,u*exp(t*u^2)*cos((x+I*y)*u)*(2*(Pi^2)*(n^4)*exp(9*u) - 3*Pi*(n^2)*exp(5*u))*exp(-Pi*(n^2)*exp(4*u)))));
20
- newton_quot_Ht_int_old(x,y=0.4,t=0.4,h=0.000001,n0=5) = return((Ht_int_old(x+h,y=0.4,t=0.4,n0)-Ht_int_old(x,y=0.4,t=0.4,n0))/h);
21
-
22
- Ht_integral(x,y=0.4,t=0.4) = {
23
- n0 = 4;
24
- X = 2;
25
- th = Pi/8 - atan((9+y)/x);
26
- alph = exp(-Pi*n0*cos(th));
27
- alph_factor1 = (n0^4)/(1-alph) + (4*n0^3)*alph/(1-alph)^2 + 6*(n0^2)*(alph^2 + alph)/(1-alph)^3 + 4*n0*(alph^3 + 4*alph^2 + alph)/(1-alph)^4 + (alph^4 + 11*alph^3 + 11*alph^2 + alph)/(1-alph)^5;
28
- alph_factor2 = (n0^2)/(1-alph) + 2*n0*alph/(1-alph)^2 + (alph^2 + alph)/(1-alph)^3;
29
-
30
- sum_tail1 = (tail_factor1(t,th,x,n0,9+y) + tail_factor1(t,th,x,n0,9-y))*alph_factor1;
31
- sum_tail2 = (tail_factor2(t,th,x,n0,5+y) + tail_factor2(t,th,x,n0,5-y))*alph_factor2;
32
-
33
- sum_tail3 = sum(n=1,n0-1,integ_tail1(t,th,X,n,9+y)) + sum(n=1,n0-1,integ_tail1(t,th,X,n,9-y));
34
- sum_tail4 = sum(n=1,n0-1,integ_tail1(t,th,X,n,5+y)) + sum(n=1,n0-1,integ_tail1(t,th,X,n,5-y));
35
-
36
- overall_tail = 0.5*(sum_tail1 + sum_tail2 + sum_tail3 + sum_tail4);
37
-
38
- main_est1 = sum(n=1,n0-1,2*(Pi^2)*(n^4)*(I_t_th(t,th,X,x-(9-y)*I,Pi*n^2) + conj(I_t_th(t,th,X,x-(9+y)*I,Pi*n^2))));
39
- main_est2 = sum(n=1,n0-1,3*Pi*(n^2)*(I_t_th(t,th,X,x-(5-y)*I,Pi*n^2) + conj(I_t_th(t,th,X,x-(5+y)*I,Pi*n^2))));
40
- main_est = 0.5*(main_est1 - main_est2);
21
+ Ht_integral(x,y=0.4,t=0.4,n0=6,X=6) = {
22
+ th = thetafunc(x,y);
23
+ main_est1 = 2*(Pi^2)*sum(n=1,n0,(n^4)*(I_t_th(t,th,X,x-(9-y)*I,Pi*n^2) + conj(I_t_th(t,th,X,x-(9+y)*I,Pi*n^2))));
24
+ main_est2 = 3*Pi*sum(n=1,n0,(n^2)*(I_t_th(t,th,X,x-(5-y)*I,Pi*n^2) + conj(I_t_th(t,th,X,x-(5+y)*I,Pi*n^2))));
25
+ main_est = (1/2)*(main_est1 - main_est2);
41
26
return(main_est);
42
27
}
43
28
44
- ddx_Ht_integral(x,y=0.4,t=0.4) = {
45
- n0 = 4;
46
- X = 2;
47
- th = Pi/8 - atan((9+y)/x);
48
- alph = exp(-Pi*n0*cos(th));
49
- alph_factor1 = (n0^4)/(1-alph) + (4*n0^3)*alph/(1-alph)^2 + 6*(n0^2)*(alph^2 + alph)/(1-alph)^3 + 4*n0*(alph^3 + 4*alph^2 + alph)/(1-alph)^4 + (alph^4 + 11*alph^3 + 11*alph^2 + alph)/(1-alph)^5;
50
- alph_factor2 = (n0^2)/(1-alph) + 2*n0*alph/(1-alph)^2 + (alph^2 + alph)/(1-alph)^3;
51
-
52
- sum_tail1 = (tail_factor1(t,th,x,n0,9+y) + tail_factor1(t,th,x,n0,9-y))*alph_factor1;
53
- sum_tail2 = (tail_factor2(t,th,x,n0,5+y) + tail_factor2(t,th,x,n0,5-y))*alph_factor2;
54
-
55
- sum_tail3 = sum(n=1,n0-1,integ_tail1(t,th,X,n,9+y)) + sum(n=1,n0-1,integ_tail1(t,th,X,n,9-y));
56
- sum_tail4 = sum(n=1,n0-1,integ_tail1(t,th,X,n,5+y)) + sum(n=1,n0-1,integ_tail1(t,th,X,n,5-y));
57
-
58
- overall_tail = 0.5*(sum_tail1 + sum_tail2 + sum_tail3 + sum_tail4);
59
-
60
- main_est1 = sum(n=1,n0-1,2*(Pi^2)*(n^4)*(J_t_th(t,th,X,x-(9-y)*I,Pi*n^2) - conj(I_t_th(t,th,X,x-(9+y)*I,Pi*n^2))));
61
- main_est2 = sum(n=1,n0-1,3*Pi*(n^2)*(I_t_th(t,th,X,x-(5-y)*I,Pi*n^2) - conj(I_t_th(t,th,X,x-(5+y)*I,Pi*n^2))));
29
+ Ht_integral_err(x,y=0.4,t=0.4,n0=6,X=6) = {
30
+ th = thetafunc(x,y);
31
+ n1 = n0+1;
32
+ alph = exp(-Pi*n1*cos(4*th));
33
+ sum_tail1 = 2*(Pi^2)*(tail_factor(t,th,x,n1,9+y) + tail_factor(t,th,x,n1,9-y))*alph_factor1(alph,n1);
34
+ sum_tail2 = 3*Pi*(tail_factor(t,th,x,n1,5+y) + tail_factor(t,th,x,n1,5-y))*alph_factor2(alph,n1);
35
+ sum_tail3 = 2*(Pi^2)*sum(n=1,n0,(n^4)*(integ_tail(t,th,X,n,9+y) + integ_tail(t,th,X,n,9-y)));
36
+ sum_tail4 = 3*Pi*sum(n=1,n0,(n^2)*(integ_tail(t,th,X,n,5+y) + integ_tail(t,th,X,n,5-y)));
37
+ overall_tail = (1/2)*(sum_tail1 + sum_tail2 + sum_tail3 + sum_tail4);
38
+ return(overall_tail);
39
+ }
40
+
41
+ ddx_Ht_integral(x,y=0.4,t=0.4,n0=6,X=6) = {
42
+ th = thetafunc(x,y);
43
+ main_est1 = 2*(Pi^2)*sum(n=1,n0,(n^4)*(J_t_th(t,th,X,x-(9-y)*I,Pi*n^2) - conj(J_t_th(t,th,X,x-(9+y)*I,Pi*n^2))));
44
+ main_est2 = 3*Pi*sum(n=1,n0,(n^2)*(J_t_th(t,th,X,x-(5-y)*I,Pi*n^2) - conj(J_t_th(t,th,X,x-(5+y)*I,Pi*n^2))));
62
45
main_est = (I/2)*(main_est1 - main_est2);
63
46
return(main_est);
64
47
}
65
48
66
- newton_quot_Ht_integral(x,y=0.4,t=0.4,h=0.0001) = return((Ht_integral(x+h,y,t)-Ht_integral(x,y,t))/h);
49
+ ddx_Ht_integral_err(x,y=0.4,t=0.4,n0=6,X=6) = {
50
+ th = thetafunc(x,y);
51
+ n1 = n0+1;
52
+ alph = exp(-Pi*n1*cos(4*th));
53
+ sum_tail1 = 2*(Pi^2)*(ddx_tail_factor(t,th,x,n1,9+y) + ddx_tail_factor(t,th,x,n1,9-y))*alph_factor1(alph,n1);
54
+ sum_tail2 = 3*Pi*(ddx_tail_factor(t,th,x,n1,5+y) + ddx_tail_factor(t,th,x,n1,5-y))*alph_factor2(alph,n1);
55
+ sum_tail3 = 2*(Pi^2)*sum(n=1,n0,(n^4)*(ddx_integ_tail(t,th,X,n,9+y) + ddx_integ_tail(t,th,X,n,9-y)));
56
+ sum_tail4 = 3*Pi*sum(n=1,n0,(n^2)*(ddx_integ_tail(t,th,X,n,5+y) + ddx_integ_tail(t,th,X,n,5-y)));
57
+ overall_tail = (1/2)*(sum_tail1 + sum_tail2 + sum_tail3 + sum_tail4);
58
+ return(overall_tail);
59
+ }
67
60
68
61
abceff_x(x,y=0.4,t=0.4) = {
69
62
T = x/2;
@@ -85,25 +78,50 @@ abceff_x(x,y=0.4,t=0.4) = {
85
78
B = B0 * B_sum;
86
79
termC1 = Pi^(-sdash/2)*gamma(sdash/2)*(a^(-sig))*C0(p)*U;
87
80
termC2 = Pi^(-(1-sdash)/2)*gamma((1-sdash)/2)*(a^(-(1-sig)))*conj(C0(p))*conj(U);
88
- C = exp(t*Pi^2/64)*(sdash*(sdash-1)/2)*(-1 ^N)*(termC1 + termC2);
81
+ C = exp(t*Pi^2/64)*(sdash*(sdash-1)/2)*((-1) ^N)*(termC1 + termC2);
89
82
return((A+B-C)/8);
90
83
}
91
84
92
- x=11;n=1;X=2;y=0.4;t=0.4;a=9+y;beta = Pi*n^2;th = Pi/8 - atan((9+y)/x);lhs=beta*exp(4*X)*cos(4*th);rhs=max(t/2,(a+2*t*X)/4)
93
- print(x," ",X," ",lhs," ",rhs);
85
+ abeff_x(x,y=0.4,t=0.4) = {
86
+ T = x/2;
87
+ Tdash = T + Pi*t/8;
88
+ a=sqrt(Tdash/(2*Pi));
89
+ N=floor(a);
90
+ p = 1 - 2*(a-N);
91
+ U = exp(-I*((Tdash/2)*log(Tdash/(2*Pi)) - Tdash/2 - Pi/8));
92
+ sig = (1-y)/2;
93
+ s = sig + I*T;
94
+ sdash = sig + I*Tdash;
95
+ alph1 = alpha1(s);
96
+ alph2 = alpha1(1-s);
97
+ A0 = exp((t/4)*alph1^2)*H01(s);
98
+ B0 = exp((t/4)*alph2^2)*H01(1-s);
99
+ A_sum = sum(n=1,N,n^((t/4.0)*log(n) - (t/2.0)*alph1 - s));
100
+ B_sum = sum(n=1,N,n^((t/4.0)*log(n) - (t/2.0)*alph2 - (1-s)));
101
+ A = A0 * A_sum;
102
+ B = B0 * B_sum;
103
+ return((A+B)/8);
104
+ }
105
+
106
+ ddx_Ht_bound(x,y=0.4,t=0.4,n0=50,X=6) = {
107
+ th = Pi/8 - atan((9+y)/x);
108
+ main_est1 = 2*(Pi^2)*sum(n=1,n0,(n^4)*(Jbound_t_th(t,th,X,(9-y),Pi*n^2) + Jbound_t_th(t,th,X,(9+y),Pi*n^2)));
109
+ main_est2 = 3*Pi*sum(n=1,n0,(n^2)*(Jbound_t_th(t,th,X,(5-y),Pi*n^2) + Jbound_t_th(t,th,X,(5+y),Pi*n^2)));
110
+ main_est = (1/2)*(main_est1 + main_est2);
111
+ print(main_est);
112
+ return(main_est);
113
+ }
94
114
95
- x=11;n=4;y=0.4;t=0.4;a=9+y;th = Pi/8 - atan((9+y)/x);lhs=Pi*(n^2)*cos(th);rhs=max(t/2,a/4)
96
- print(x," ",lhs," ",rhs);
115
+ newton_quot_Ht_integral(x,y=0.4,t=0.4,h=0.0001) = return((Ht_integral(x+h,y,t)-Ht_integral(x,y,t))/h);
116
+ newton_quot_abc(x,y=0.4,t=0.4,h=0.0001) = return((abceff_x(x+h,y,t)-abceff_x(x,y,t))/h);
117
+ newton_quot_ab(x,y=0.4,t=0.4,h=0.0001) = return((abeff_x(x+h,y,t)-abeff_x(x,y,t))/h);
97
118
98
- x=1;
99
- print(Ht_integral(x)/B0_eff(x),"\n",Ht_int_old(x)/B0_eff(x),"\n",abceff_x(x)/B0_eff(x))
100
119
101
- x=25;
102
- print(Ht_integral(x)/B0_eff(x),"\n",abceff_x(x)/B0_eff(x))
103
120
104
- x=1;
105
- print(Ht_int_old (x)/B0_eff(x),"\n",ddx_Ht_int_old(x)/B0_eff(x),"\n",newton_quot_Ht_int_old(x)/B0_eff(x ));
121
+ \\for(x=20,300,print(x," ",abs(Ht_integral(x)/B0_eff(x))*precision(1., 10)," ",abs(abceff_x(x)/B0_eff(x))*precision(1., 10)," ",\
122
+ abs(ddx_Ht_integral (x)/B0_eff(x))*precision(1., 10) ));
106
123
107
- x=25;
108
- print(Ht_integral(x)/B0_eff(x),"\n",ddx_Ht_integral(x)/B0_eff(x),"\n",newton_quot_Ht_integral(x)/B0_eff(x));
124
+ \\for(x=20,100,print(x," ",abs(ddx_Ht_integral(x)/newton_quot_abc(x,0.4,0.4,0.0000001))*precision(1., 10)));
109
125
126
+ \\xc=1600;y=0.4;thc = Pi/8 - atan((9+y)/xc);D = ddx_Ht_bound(xc);filename="ddxratio_xc_1600.csv";
127
+ \\for(x=200,16000,write(filename,concat(concat((x/10.0)*precision(1., 10),","),(D*exp(-thc*x/10)/abs(newton_quot_abc(x/10,0.4,0.4,0.0000001)))*precision(1., 10))));
0 commit comments