forked from watsonyanghx/CNN_LSTM_CTC_Tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
168 lines (129 loc) · 5.86 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import numpy as np
import tensorflow as tf
import cv2
# +-* + () + 10 digit + blank + space
num_classes = 3 + 2 + 10 + 1 + 1
maxPrintLen = 100
tf.app.flags.DEFINE_boolean('restore', False, 'whether to restore from the latest checkpoint')
tf.app.flags.DEFINE_string('checkpoint_dir', './checkpoint/', 'the checkpoint dir')
tf.app.flags.DEFINE_float('initial_learning_rate', 1e-3, 'inital lr')
tf.app.flags.DEFINE_integer('image_height', 60, 'image height')
tf.app.flags.DEFINE_integer('image_width', 180, 'image width')
tf.app.flags.DEFINE_integer('image_channel', 1, 'image channels as input')
tf.app.flags.DEFINE_integer('max_stepsize', 64, 'max stepsize in lstm, as well as '
'the output channels of last layer in CNN')
tf.app.flags.DEFINE_integer('num_hidden', 128, 'number of hidden units in lstm')
tf.app.flags.DEFINE_integer('num_epochs', 10000, 'maximum epochs')
tf.app.flags.DEFINE_integer('batch_size', 40, 'the batch_size')
tf.app.flags.DEFINE_integer('save_steps', 1000, 'the step to save checkpoint')
tf.app.flags.DEFINE_integer('validation_steps', 500, 'the step to validation')
tf.app.flags.DEFINE_float('decay_rate', 0.98, 'the lr decay rate')
tf.app.flags.DEFINE_float('beta1', 0.9, 'parameter of adam optimizer beta1')
tf.app.flags.DEFINE_float('beta2', 0.999, 'adam parameter beta2')
tf.app.flags.DEFINE_integer('decay_steps', 10000, 'the lr decay_step for optimizer')
tf.app.flags.DEFINE_float('momentum', 0.9, 'the momentum')
tf.app.flags.DEFINE_string('train_dir', './imgs/train/', 'the train data dir')
tf.app.flags.DEFINE_string('val_dir', './imgs/val/', 'the val data dir')
tf.app.flags.DEFINE_string('infer_dir', './imgs/infer/', 'the infer data dir')
tf.app.flags.DEFINE_string('log_dir', './log', 'the logging dir')
tf.app.flags.DEFINE_string('mode', 'train', 'train, val or infer')
tf.app.flags.DEFINE_integer('num_gpus', 0, 'num of gpus')
FLAGS = tf.app.flags.FLAGS
# num_batches_per_epoch = int(num_train_samples/FLAGS.batch_size)
charset = '0123456789+-*()'
encode_maps = {}
decode_maps = {}
for i, char in enumerate(charset, 1):
encode_maps[char] = i
decode_maps[i] = char
SPACE_INDEX = 0
SPACE_TOKEN = ''
encode_maps[SPACE_TOKEN] = SPACE_INDEX
decode_maps[SPACE_INDEX] = SPACE_TOKEN
class DataIterator:
def __init__(self, data_dir):
self.image = []
self.labels = []
for root, sub_folder, file_list in os.walk(data_dir):
for file_path in file_list:
image_name = os.path.join(root, file_path)
im = cv2.imread(image_name, 0).astype(np.float32)/255.
# resize to same height, different width will consume time on padding
# im = cv2.resize(im, (image_width, image_height))
im = np.reshape(im, [FLAGS.image_height, FLAGS.image_width, FLAGS.image_channel])
self.image.append(im)
# image is named as /.../<folder>/00000_abcd.png
code = image_name.split('/')[-1].split('_')[1].split('.')[0]
code = [SPACE_INDEX if code == SPACE_TOKEN else encode_maps[c] for c in list(code)]
self.labels.append(code)
@property
def size(self):
return len(self.labels)
def the_label(self, indexs):
labels = []
for i in indexs:
labels.append(self.labels[i])
return labels
def input_index_generate_batch(self, index=None):
if index:
image_batch = [self.image[i] for i in index]
label_batch = [self.labels[i] for i in index]
else:
image_batch = self.image
label_batch = self.labels
def get_input_lens(sequences):
# 64 is the output channels of the last layer of CNN
lengths = np.asarray([FLAGS.max_stepsize for _ in sequences], dtype=np.int64)
return sequences, lengths
batch_inputs, batch_seq_len = get_input_lens(np.array(image_batch))
batch_labels = sparse_tuple_from_label(label_batch)
return batch_inputs, batch_seq_len, batch_labels
def accuracy_calculation(original_seq, decoded_seq, ignore_value=-1, isPrint=False):
if len(original_seq) != len(decoded_seq):
print('original lengths is different from the decoded_seq, please check again')
return 0
count = 0
for i, origin_label in enumerate(original_seq):
decoded_label = [j for j in decoded_seq[i] if j != ignore_value]
if isPrint and i < maxPrintLen:
# print('seq{0:4d}: origin: {1} decoded:{2}'.format(i, origin_label, decoded_label))
with open('./test.csv', 'w') as f:
f.write(str(origin_label) + '\t' + str(decoded_label))
f.write('\n')
if origin_label == decoded_label:
count += 1
return count * 1.0 / len(original_seq)
def sparse_tuple_from_label(sequences, dtype=np.int32):
"""Create a sparse representention of x.
Args:
sequences: a list of lists of type dtype where each element is a sequence
Returns:
A tuple with (indices, values, shape)
"""
indices = []
values = []
for n, seq in enumerate(sequences):
indices.extend(zip([n] * len(seq), range(len(seq))))
values.extend(seq)
indices = np.asarray(indices, dtype=np.int64)
values = np.asarray(values, dtype=dtype)
shape = np.asarray([len(sequences), np.asarray(indices).max(0)[1] + 1], dtype=np.int64)
return indices, values, shape
def eval_expression(encoded_list):
"""
:param encoded_list:
:return:
"""
eval_rs = []
for item in encoded_list:
try:
rs = str(eval(item))
eval_rs.append(rs)
except:
eval_rs.append(item)
continue
with open('./result.txt') as f:
for ith in xrange(len(encoded_list)):
f.write(encoded_list[ith] + ' ' + eval_rs[ith] + '\n')
return eval_rs