forked from samtools/bcftools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvcfsom.c
718 lines (666 loc) · 23.9 KB
/
vcfsom.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
/* vcfsom.c -- SOM (Self-Organizing Map) filtering.
Copyright (C) 2013-2014, 2020 Genome Research Ltd.
Author: Petr Danecek <pd3@sanger.ac.uk>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE. */
#include <stdio.h>
#include <unistd.h>
#include <getopt.h>
#include <assert.h>
#include <ctype.h>
#include <string.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <math.h>
#include <time.h>
#include <htslib/vcf.h>
#include <htslib/synced_bcf_reader.h>
#include <htslib/vcfutils.h>
#include <htslib/hts_os.h>
#include <inttypes.h>
#include "bcftools.h"
#define SOM_TRAIN 1
#define SOM_CLASSIFY 2
typedef struct
{
int ndim; // dimension of the map (2D, 3D, ...)
int nbin; // number of bins in th map
int size; // pow(nbin,ndim)
int kdim; // dimension of the input vectors
int nt, t; // total number of learning cycles and the current cycle
double *w, *c; // weights and counts (sum of learning influence)
double learn; // learning rate
double bmu_th; // best-matching unit threshold
int *a_idx, *b_idx; // temp arrays for traversing variable number of nested loops
double *div; // dtto
}
som_t;
typedef struct
{
// SOM parameters
double bmu_th, learn;
int ndim, nbin, ntrain, t;
int nfold; // n-fold cross validation = the number of SOMs
som_t **som;
// annots reader's data
htsFile *file; // reader
kstring_t str; // temporary string for the reader
int dclass, mvals;
double *vals;
// training data
double *train_dat;
int *train_class, mtrain_class, mtrain_dat;
int rand_seed, good_class, bad_class;
char **argv, *fname, *prefix;
int argc, action, train_bad, merge;
}
args_t;
static void usage(void);
FILE *open_file(char **fname, const char *mode, const char *fmt, ...);
void mkdir_p(const char *fmt, ...);
char *msprintf(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
int n = vsnprintf(NULL, 0, fmt, ap) + 2;
va_end(ap);
char *str = (char*)malloc(n);
va_start(ap, fmt);
vsnprintf(str, n, fmt, ap);
va_end(ap);
return str;
}
/*
* char *t, *p = str;
* t = column_next(p, '\t');
* if ( strlen("<something>")==t-p && !strncmp(p,"<something>",t-p) ) printf("found!\n");
*
* char *t;
* t = column_next(str, '\t'); if ( !*t ) error("expected field\n", str);
* t = column_next(t+1, '\t'); if ( !*t ) error("expected field\n", str);
*/
static inline char *column_next(char *start, char delim)
{
char *end = start;
while (*end && *end!=delim) end++;
return end;
}
/**
* annots_reader_next() - reads next line from annots.tab.gz and sets: class, vals
* Returns 1 on successful read or 0 if no further record could be read.
*/
int annots_reader_next(args_t *args)
{
args->str.l = 0;
if ( hts_getline(args->file,'\n',&args->str)<=0 ) return 0;
char *t, *line = args->str.s;
if ( !args->mvals )
{
t = line;
while ( *t )
{
if ( *t=='\t' ) args->mvals++;
t++;
}
args->vals = (double*) malloc(args->mvals*sizeof(double));
}
// class
args->dclass = atoi(line);
t = column_next(line, '\t');
// values
int i;
for (i=0; i<args->mvals; i++)
{
if ( !*t ) error("Could not parse %d-th data field: is the line truncated?\nThe line was: [%s]\n",i+2,line);
args->vals[i] = atof(++t);
t = column_next(t,'\t');
}
return 1;
}
void annots_reader_reset(args_t *args)
{
if ( args->file ) hts_close(args->file);
if ( !args->fname ) error("annots_reader_reset: no fname\n");
args->file = hts_open(args->fname, "r");
}
void annots_reader_close(args_t *args)
{
hts_close(args->file);
}
static void som_write_map(char *prefix, som_t **som, int nsom)
{
FILE *fp = open_file(NULL,"w","%s.som",prefix);
size_t nw;
if ( (nw=fwrite("SOMv1",5,1,fp))!=5 ) error("Failed to write 5 bytes\n");
if ( (nw=fwrite(&nsom,sizeof(int),1,fp))!=sizeof(int) ) error("Failed to write %zu bytes\n",sizeof(int));
int i;
for (i=0; i<nsom; i++)
{
if ( (nw=fwrite(&som[i]->size,sizeof(int),1,fp))!=sizeof(int) ) error("Failed to write %zu bytes\n",sizeof(int));
if ( (nw=fwrite(&som[i]->kdim,sizeof(int),1,fp))!=sizeof(int) ) error("Failed to write %zu bytes\n",sizeof(int));
if ( (nw=fwrite(som[i]->w,sizeof(double),som[i]->size*som[i]->kdim,fp))!=sizeof(double)*som[i]->size*som[i]->kdim ) error("Failed to write %zu bytes\n",sizeof(double)*som[i]->size*som[i]->kdim);
if ( (nw=fwrite(som[i]->c,sizeof(double),som[i]->size,fp))!=sizeof(double)*som[i]->size ) error("Failed to write %zu bytes\n",sizeof(double)*som[i]->size);
}
if ( fclose(fp) ) error("%s.som: fclose failed\n",prefix);
}
static som_t** som_load_map(char *prefix, int *nsom)
{
FILE *fp = open_file(NULL,"r","%s.som",prefix);
char buf[5];
if ( fread(buf,5,1,fp)!=1 || strncmp(buf,"SOMv1",5) ) error("Could not parse %s.som\n", prefix);
if ( fread(nsom,sizeof(int),1,fp)!=1 ) error("Could not read %s.som\n", prefix);
som_t **som = (som_t**)malloc(*nsom*sizeof(som_t*));
int i;
for (i=0; i<*nsom; i++)
{
som[i] = (som_t*) calloc(1,sizeof(som_t));
if ( fread(&som[i]->size,sizeof(int),1,fp) != 1 ) error("Could not read %s.som\n", prefix);
if ( fread(&som[i]->kdim,sizeof(int),1,fp) != 1 ) error("Could not read %s.som\n", prefix);
som[i]->w = (double*) malloc(sizeof(double)*som[i]->size*som[i]->kdim);
som[i]->c = (double*) malloc(sizeof(double)*som[i]->size);
if ( fread(som[i]->w,sizeof(double),som[i]->size*som[i]->kdim,fp) != som[i]->size*som[i]->kdim ) error("Could not read from %s.som\n", prefix);
if ( fread(som[i]->c,sizeof(double),som[i]->size,fp) != som[i]->size ) error("Could not read from %s.som\n", prefix);
}
if ( fclose(fp) ) error("%s.som: fclose failed\n",prefix);
return som;
}
static void som_create_plot(som_t *som, char *prefix)
{
if ( som->ndim!=2 ) return;
char *fname;
FILE *fp = open_file(&fname,"w","%s.py",prefix);
fprintf(fp,
"import matplotlib as mpl\n"
"mpl.use('Agg')\n"
"import matplotlib.pyplot as plt\n"
"\n"
"dat = [\n"
);
int i,j;
double *val = som->c;
for (i=0; i<som->nbin; i++)
{
fprintf(fp,"[");
for (j=0; j<som->nbin; j++)
{
if ( j>0 ) fprintf(fp,",");
fprintf(fp,"%e", *val);
val++;
}
fprintf(fp,"],\n");
}
fprintf(fp,
"]\n"
"fig = plt.figure()\n"
"ax1 = plt.subplot(111)\n"
"im1 = ax1.imshow(dat)\n"
"fig.colorbar(im1)\n"
"plt.savefig('%s.png')\n"
"plt.close()\n"
"\n", prefix
);
fclose(fp);
free(fname);
}
// Find the best matching unit: the node with minimum distance from the input vector
static inline int som_find_bmu(som_t *som, double *vec, double *dist)
{
double *ptr = som->w;
double min_dist = HUGE_VAL;
int min_idx = 0;
int i, k;
for (i=0; i<som->size; i++)
{
double dist = 0;
for (k=0; k<som->kdim; k++)
dist += (vec[k] - ptr[k]) * (vec[k] - ptr[k]);
if ( dist < min_dist )
{
min_dist = dist;
min_idx = i;
}
ptr += som->kdim;
}
if ( dist ) *dist = min_dist;
return min_idx;
}
static inline double som_get_score(som_t *som, double *vec, double bmu_th)
{
double *ptr = som->w;
double min_dist = HUGE_VAL;
int i, k;
for (i=0; i<som->size; i++)
{
if ( som->c[i] >= bmu_th )
{
double dist = 0;
for (k=0; k<som->kdim; k++)
dist += (vec[k] - ptr[k]) * (vec[k] - ptr[k]);
if ( dist < min_dist ) min_dist = dist;
}
ptr += som->kdim;
}
return sqrt(min_dist);
}
// Convert flat index to that of a k-dimensional cube
static inline void som_idx_to_ndim(som_t *som, int idx, int *ndim)
{
int i;
double sub = 0;
ndim[0] = idx/som->div[0];
for (i=1; i<som->ndim; i++)
{
sub += ndim[i-1] * som->div[i-1];
ndim[i] = (idx - sub)/som->div[i];
}
}
static void som_train_site(som_t *som, double *vec, int update_counts)
{
// update learning rate and learning radius
som->t++;
double dt = exp(-som->t/som->nt);
double learning_rate = som->learn * dt;
double radius = som->nbin * dt; radius *= radius;
// find the best matching unit and its indexes
int min_idx = som_find_bmu(som, vec, NULL);
som_idx_to_ndim(som, min_idx, som->a_idx);
// update the weights: traverse the map and make all nodes within the
// radius more similar to the input vector
double *ptr = som->w;
double *cnt = som->c;
int i, j, k;
for (i=0; i<som->size; i++)
{
som_idx_to_ndim(som, i, som->b_idx);
double dist = 0;
for (j=0; j<som->ndim; j++)
dist += (som->a_idx[j] - som->b_idx[j]) * (som->a_idx[j] - som->b_idx[j]);
if ( dist <= radius )
{
double influence = exp(-dist*dist*0.5/radius) * learning_rate;
for (k=0; k<som->kdim; k++)
ptr[k] += influence * (vec[k] - ptr[k]);
// Bad sites may help to shape the map, but only nodes with big enough
// influence will be used for classification.
if ( update_counts ) *cnt += influence;
}
ptr += som->kdim;
cnt++;
}
}
static void som_norm_counts(som_t *som)
{
int i;
double max = 0;
for (i=0; i<som->size; i++)
if ( max < som->c[i] ) max = som->c[i];
for (i=0; i<som->size; i++)
som->c[i] /= max;
}
static som_t *som_init(args_t *args)
{
som_t *som = (som_t*) calloc(1,sizeof(som_t));
som->ndim = args->ndim;
som->nbin = args->nbin;
som->kdim = args->mvals;
som->nt = args->ntrain;
som->learn = args->learn;
som->bmu_th = args->bmu_th;
som->size = pow(som->nbin,som->ndim);
som->w = (double*) malloc(sizeof(double)*som->size*som->kdim);
if ( !som->w ) error("Could not alloc %"PRIu64" bytes [nbin=%d ndim=%d kdim=%d]\n", (uint64_t)(sizeof(double)*som->size*som->kdim),som->nbin,som->ndim,som->kdim);
som->c = (double*) calloc(som->size,sizeof(double));
if ( !som->w ) error("Could not alloc %"PRIu64" bytes [nbin=%d ndim=%d]\n", (uint64_t)(sizeof(double)*som->size),som->nbin,som->ndim);
int i;
for (i=0; i<som->size*som->kdim; i++)
som->w[i] = random();
som->a_idx = (int*) malloc(sizeof(int)*som->ndim);
som->b_idx = (int*) malloc(sizeof(int)*som->ndim);
som->div = (double*) malloc(sizeof(double)*som->ndim);
for (i=0; i<som->ndim; i++)
som->div[i] = pow(som->nbin,som->ndim-i-1);
return som;
}
static void som_destroy(som_t *som)
{
free(som->a_idx); free(som->b_idx); free(som->div);
free(som->w); free(som->c);
free(som);
}
static void init_data(args_t *args)
{
// Get first line to learn the vector size
annots_reader_reset(args);
annots_reader_next(args);
if ( args->action==SOM_CLASSIFY )
args->som = som_load_map(args->prefix,&args->nfold);
}
static void destroy_data(args_t *args)
{
int i;
if ( args->som )
{
for (i=0; i<args->nfold; i++) som_destroy(args->som[i]);
}
free(args->train_dat);
free(args->train_class);
free(args->som);
free(args->vals);
free(args->str.s);
}
#define MERGE_MIN 0
#define MERGE_MAX 1
#define MERGE_AVG 2
static double get_min_score(args_t *args, int iskip)
{
int i;
double score, min_score = HUGE_VAL;
for (i=0; i<args->nfold; i++)
{
if ( i==iskip ) continue;
score = som_get_score(args->som[i], args->vals, args->bmu_th);
if ( i==0 || score < min_score ) min_score = score;
}
return min_score;
}
static double get_max_score(args_t *args, int iskip)
{
int i;
double score, max_score = -HUGE_VAL;
for (i=0; i<args->nfold; i++)
{
if ( i==iskip ) continue;
score = som_get_score(args->som[i], args->vals, args->bmu_th);
if ( i==0 || max_score < score ) max_score = score;
}
return max_score;
}
static double get_avg_score(args_t *args, int iskip)
{
int i, n = 0;
double score = 0;
for (i=0; i<args->nfold; i++)
{
if ( i==iskip ) continue;
score += som_get_score(args->som[i], args->vals, args->bmu_th);
n++;
}
return score/n;
}
static int cmpfloat_desc(const void *a, const void *b)
{
float fa = *((float*)a);
float fb = *((float*)b);
if ( fa<fb ) return 1;
if ( fa>fb ) return -1;
return 0;
}
static void create_eval_plot(args_t *args)
{
FILE *fp = open_file(NULL,"w","%s.eval.py", args->prefix);
fprintf(fp,
"import matplotlib as mpl\n"
"mpl.use('Agg')\n"
"import matplotlib.pyplot as plt\n"
"\n"
"import csv\n"
"csv.register_dialect('tab', delimiter='\\t', quoting=csv.QUOTE_NONE)\n"
"dat = []\n"
"with open('%s.eval', 'r') as f:\n"
"\treader = csv.reader(f, 'tab')\n"
"\tfor row in reader:\n"
"\t\tif row[0][0]!='#': dat.append(row)\n"
"\n"
"fig = plt.figure()\n"
"ax1 = plt.subplot(111)\n"
"ax1.plot([x[0] for x in dat],[x[1] for x in dat],'g',label='Good')\n"
"ax1.plot([x[0] for x in dat],[x[2] for x in dat],'r',label='Bad')\n"
"ax1.set_xlabel('SOM score')\n"
"ax1.set_ylabel('Number of training sites')\n"
"ax1.legend(loc='best',prop={'size':8},frameon=False)\n"
"plt.savefig('%s.eval.png')\n"
"plt.close()\n"
"\n", args->prefix,args->prefix
);
fclose(fp);
}
static void do_train(args_t *args)
{
// read training sites
int i, igood = 0, ibad = 0, ngood = 0, nbad = 0, ntrain = 0;
annots_reader_reset(args);
while ( annots_reader_next(args) )
{
// determine which of the nfold's SOMs to train
int isom = 0;
if ( args->dclass == args->good_class )
{
if ( ++igood >= args->nfold ) igood = 0;
isom = igood;
ngood++;
}
else if ( args->dclass == args->bad_class )
{
if ( ++ibad >= args->nfold ) ibad = 0;
isom = ibad;
nbad++;
}
else
error("Could not determine the class: %d (vs %d and %d)\n", args->dclass,args->good_class,args->bad_class);
// save the values for evaluation
ntrain++;
hts_expand(double, ntrain*args->mvals, args->mtrain_dat, args->train_dat);
hts_expand(int, ntrain, args->mtrain_class, args->train_class);
memcpy(args->train_dat+(ntrain-1)*args->mvals, args->vals, args->mvals*sizeof(double));
args->train_class[ntrain-1] = (args->dclass==args->good_class ? 1 : 0) | isom<<1; // store class + chunk used for training
}
annots_reader_close(args);
// init maps
if ( !args->ntrain ) args->ntrain = ngood/args->nfold;
srandom(args->rand_seed);
args->som = (som_t**) malloc(sizeof(som_t*)*args->nfold);
for (i=0; i<args->nfold; i++) args->som[i] = som_init(args);
// train
for (i=0; i<ntrain; i++)
{
int is_good = args->train_class[i] & 1;
int isom = args->train_class[i] >> 1;
if ( is_good || args->train_bad )
som_train_site(args->som[isom], args->train_dat+i*args->mvals, is_good);
}
// norm and create plots
for (i=0; i<args->nfold; i++)
{
som_norm_counts(args->som[i]);
if ( args->prefix )
{
char *bname = msprintf("%s.som.%d", args->prefix,i);
som_create_plot(args->som[i], bname);
free(bname);
}
}
// evaluate
float *good = (float*) malloc(sizeof(float)*ngood); assert(good);
float *bad = (float*) malloc(sizeof(float)*nbad); assert(bad);
igood = ibad = 0;
double max_score = sqrt(args->som[0]->kdim);
for (i=0; i<ntrain; i++)
{
double score = 0;
int is_good = args->train_class[i] & 1;
int isom = args->train_class[i] >> 1; // this vector was used for training isom-th SOM, skip
if ( args->nfold==1 ) isom = -1;
memcpy(args->vals, args->train_dat+i*args->mvals, args->mvals*sizeof(double));
switch (args->merge)
{
case MERGE_MIN: score = get_min_score(args, isom); break;
case MERGE_MAX: score = get_max_score(args, isom); break;
case MERGE_AVG: score = get_avg_score(args, isom); break;
}
score = 1.0 - score/max_score;
if ( is_good )
good[igood++] = score;
else
bad[ibad++] = score;
}
qsort(good, ngood, sizeof(float), cmpfloat_desc);
qsort(bad, nbad, sizeof(float), cmpfloat_desc);
FILE *fp = NULL;
if ( args->prefix ) fp = open_file(NULL,"w","%s.eval", args->prefix);
igood = 0;
ibad = 0;
float prev_score = good[0]>bad[0] ? good[0] : bad[0];
int printed = 0;
while ( igood<ngood || ibad<nbad )
{
if ( igood<ngood && good[igood]==prev_score ) { igood++; continue; }
if ( ibad<nbad && bad[ibad]==prev_score ) { ibad++; continue; }
if ( fp )
fprintf(fp,"%e\t%f\t%f\n", prev_score, (float)igood/ngood, (float)ibad/nbad);
if ( !printed && (float)igood/ngood > 0.9 )
{
printf("%.2f\t%.2f\t%e\t# %% of bad [1] and good [2] sites at a cutoff [3]\n", 100.*ibad/nbad,100.*igood/ngood,prev_score);
printed = 1;
}
if ( igood<ngood && ibad<nbad ) prev_score = good[igood]>bad[ibad] ? good[igood] : bad[ibad];
else if ( igood<ngood ) prev_score = good[igood];
else prev_score = bad[ibad];
}
if ( !printed ) printf("%.2f\t%.2f\t%e\t# %% of bad [1] and good [2] sites at a cutoff [3]\n", 100.*ibad/nbad,100.*igood/ngood,prev_score);
if ( fp )
{
if ( fclose(fp) ) error("%s.eval: fclose failed: %s\n",args->prefix,strerror(errno));
create_eval_plot(args);
som_write_map(args->prefix, args->som, args->nfold);
}
free(good);
free(bad);
}
static void do_classify(args_t *args)
{
annots_reader_reset(args);
double max_score = sqrt(args->som[0]->kdim);
while ( annots_reader_next(args) )
{
double score = 0;
switch (args->merge)
{
case MERGE_MIN: score = get_min_score(args, -1); break;
case MERGE_MAX: score = get_max_score(args, -1); break;
case MERGE_AVG: score = get_avg_score(args, -1); break;
}
printf("%e\n", 1.0 - score/max_score);
}
annots_reader_close(args);
}
static void usage(void)
{
fprintf(stderr, "\n");
fprintf(stderr, "About: SOM (Self-Organizing Map) filtering.\n");
fprintf(stderr, "Usage: bcftools som --train [options] <annots.tab.gz>\n");
fprintf(stderr, " bcftools som --classify [options]\n");
fprintf(stderr, "\n");
fprintf(stderr, "Model training options:\n");
fprintf(stderr, " -f, --nfold <int> n-fold cross-validation (number of maps) [5]\n");
fprintf(stderr, " -p, --prefix <string> prefix of output files\n");
fprintf(stderr, " -s, --size <int> map size [20]\n");
fprintf(stderr, " -t, --train \n");
fprintf(stderr, "\n");
fprintf(stderr, "Classifying options:\n");
fprintf(stderr, " -c, --classify \n");
fprintf(stderr, "\n");
fprintf(stderr, "Experimental training options (no reason to change):\n");
fprintf(stderr, " -b, --bmu-threshold <float> threshold for selection of best-matching unit [0.9]\n");
fprintf(stderr, " -d, --som-dimension <int> SOM dimension [2]\n");
fprintf(stderr, " -e, --exclude-bad exclude bad sites from training, use for evaluation only\n");
fprintf(stderr, " -l, --learning-rate <float> learning rate [1.0]\n");
fprintf(stderr, " -m, --merge <min|max|avg> -f merge algorithm [avg]\n");
fprintf(stderr, " -n, --ntrain-sites <int> effective number of training sites [number of good sites]\n");
fprintf(stderr, " -r, --random-seed <int> random seed, 0 for time() [1]\n");
fprintf(stderr, "\n");
exit(1);
}
int main_vcfsom(int argc, char *argv[])
{
int c;
args_t *args = (args_t*) calloc(1,sizeof(args_t));
args->argc = argc; args->argv = argv;
args->nbin = 20;
args->learn = 1.0;
args->bmu_th = 0.9;
args->nfold = 5;
args->rand_seed = 1;
args->ndim = 2;
args->bad_class = 1;
args->good_class = 2;
args->merge = MERGE_AVG;
args->train_bad = 1;
static struct option loptions[] =
{
{"help",0,0,'h'},
{"prefix",1,0,'p'},
{"ntrain-sites",1,0,'n'},
{"random-seed",1,0,'r'},
{"bmu-threshold",1,0,'b'},
{"exclude-bad",0,0,'e'},
{"learning-rate",1,0,'l'},
{"size",1,0,'s'},
{"som-dimension",1,0,'d'},
{"nfold",1,0,'f'},
{"merge",1,0,'m'},
{"train",0,0,'t'},
{"classify",0,0,'c'},
{0,0,0,0}
};
while ((c = getopt_long(argc, argv, "htcp:n:r:b:l:s:f:d:m:e",loptions,NULL)) >= 0) {
switch (c) {
case 'e': args->train_bad = 0; break;
case 'm':
if ( !strcmp(optarg,"min") ) args->merge = MERGE_MIN;
else if ( !strcmp(optarg,"max") ) args->merge = MERGE_MAX;
else if ( !strcmp(optarg,"avg") ) args->merge = MERGE_AVG;
else error("The -m method not recognised: %s\n", optarg);
break;
case 'p': args->prefix = optarg; break;
case 'n': args->ntrain = atoi(optarg); break;
case 'r': args->rand_seed = atoi(optarg); break;
case 'b': args->bmu_th = atof(optarg); break;
case 'l': args->learn = atof(optarg); break;
case 's': args->nbin = atoi(optarg); break;
case 'f': args->nfold = atoi(optarg); break;
case 'd':
args->ndim = atoi(optarg);
if ( args->ndim<2 ) error("Expected -d >=2, got %d\n", args->ndim);
if ( args->ndim>3 ) fprintf(stderr,"Warning: This will take a long time and is not going to make the results better: -d %d\n", args->ndim);
break;
case 't': args->action = SOM_TRAIN; break;
case 'c': args->action = SOM_CLASSIFY; break;
case 'h':
case '?': usage(); break;
default: error("Unknown argument: %s\n", optarg);
}
}
if ( !args->rand_seed ) args->rand_seed = time(NULL);
if ( argc!=optind+1 ) usage();
args->fname = argv[optind];
init_data(args);
if ( args->action == SOM_TRAIN ) do_train(args);
else if ( args->action == SOM_CLASSIFY ) do_classify(args);
destroy_data(args);
free(args);
return 0;
}