Skip to content

Gathers machine learning and Tensorflow deep learning models for NLP problems

License

Notifications You must be signed in to change notification settings

ouyangmingyuan/NLP-Models-Tensorflow

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

logo

MIT License


NLP-Models-Tensorflow, Gathers machine learning and tensorflow deep learning models for NLP problems, code simplify inside Jupyter Notebooks 100%.

Table of contents

Objective

Original implementations are quite complex and not really beginner friendly. So I tried to simplify most of it. Also, there are tons of not-yet release papers implementation. So feel free to use it for your own research!

Contents

  1. Basic cell RNN
  2. Bidirectional RNN
  3. LSTM cell RNN
  4. GRU cell RNN
  5. LSTM RNN + Conv2D
  6. K-max Conv1d
  7. LSTM RNN + Conv1D + Highway
  8. LSTM RNN with Attention
  9. Neural Turing Machine
  10. Seq2Seq
  11. Bidirectional Transformers
  12. Dynamic Memory Network
  13. Residual Network using Atrous CNN + Bahdanau Attention
  14. Transformer-XL
Complete list (67 notebooks)
  1. Basic cell RNN
  2. Basic cell RNN + Hinge
  3. Basic cell RNN + Huber
  4. Basic cell Bidirectional RNN
  5. Basic cell Bidirectional RNN + Hinge
  6. Basic cell Bidirectional RNN + Huber
  7. LSTM cell RNN
  8. LSTM cell RNN + Hinge
  9. LSTM cell RNN + Huber
  10. LSTM cell Bidirectional RNN
  11. LSTM cell Bidirectional RNN + Huber
  12. LSTM cell RNN + Dropout + L2
  13. GRU cell RNN
  14. GRU cell RNN + Hinge
  15. GRU cell RNN + Huber
  16. GRU cell Bidirectional RNN
  17. GRU cell Bidirectional RNN + Hinge
  18. GRU cell Bidirectional RNN + Huber
  19. LSTM RNN + Conv2D
  20. K-max Conv1d
  21. LSTM RNN + Conv1D + Highway
  22. LSTM RNN + Basic Attention
  23. LSTM Dilated RNN
  24. Layer-Norm LSTM cell RNN
  25. Only Attention Neural Network
  26. Multihead-Attention Neural Network
  27. Neural Turing Machine
  28. LSTM Seq2Seq
  29. LSTM Seq2Seq + Luong Attention
  30. LSTM Seq2Seq + Bahdanau Attention
  31. LSTM Seq2Seq + Beam Decoder
  32. LSTM Bidirectional Seq2Seq
  33. Pointer Net
  34. LSTM cell RNN + Bahdanau Attention
  35. LSTM cell RNN + Luong Attention
  36. LSTM cell RNN + Stack Bahdanau Luong Attention
  37. LSTM cell Bidirectional RNN + backward Bahdanau + forward Luong
  38. Bytenet
  39. Fast-slow LSTM
  40. Siamese Network
  41. LSTM Seq2Seq + tf.estimator
  42. Capsule layers + RNN LSTM
  43. Capsule layers + LSTM Seq2Seq
  44. Capsule layers + LSTM Bidirectional Seq2Seq
  45. Nested LSTM
  46. LSTM Seq2Seq + Highway
  47. Triplet loss + LSTM
  48. DNC (Differentiable Neural Computer)
  49. ConvLSTM
  50. Temporal Convd Net
  51. Batch-all Triplet-loss + LSTM
  52. Fast-text
  53. Gated Convolution Network
  54. Simple Recurrent Unit
  55. LSTM Hierarchical Attention Network
  56. Bidirectional Transformers
  57. Dynamic Memory Network
  58. Entity Network
  59. End-to-End Memory Network
  60. BOW-Chars Deep sparse Network
  61. Residual Network using Atrous CNN
  62. Residual Network using Atrous CNN + Bahdanau Attention
  63. Deep pyramid CNN
  64. Transformer-XL
  65. GPT-2
  66. Quasi-RNN
  67. Tacotron
  1. Seq2Seq-manual
  2. Seq2Seq-API Greedy
  3. Bidirectional Seq2Seq-manual
  4. Bidirectional Seq2Seq-API Greedy
  5. Bidirectional Seq2Seq-manual + backward Bahdanau + forward Luong
  6. Bidirectional Seq2Seq-API + backward Bahdanau + forward Luong + Stack Bahdanau Luong Attention + Beam Decoder
  7. Bytenet
  8. Capsule layers + LSTM Seq2Seq-API + Luong Attention + Beam Decoder
  9. End-to-End Memory Network
  10. Attention is All you need
  11. Transformer-XL + LSTM
  12. GPT-2 + LSTM
  13. Tacotron + Beam decoder
Complete list (53 notebooks)
  1. Basic cell Seq2Seq-manual
  2. LSTM Seq2Seq-manual
  3. GRU Seq2Seq-manual
  4. Basic cell Seq2Seq-API Greedy
  5. LSTM Seq2Seq-API Greedy
  6. GRU Seq2Seq-API Greedy
  7. Basic cell Bidirectional Seq2Seq-manual
  8. LSTM Bidirectional Seq2Seq-manual
  9. GRU Bidirectional Seq2Seq-manual
  10. Basic cell Bidirectional Seq2Seq-API Greedy
  11. LSTM Bidirectional Seq2Seq-API Greedy
  12. GRU Bidirectional Seq2Seq-API Greedy
  13. Basic cell Seq2Seq-manual + Luong Attention
  14. LSTM Seq2Seq-manual + Luong Attention
  15. GRU Seq2Seq-manual + Luong Attention
  16. Basic cell Seq2Seq-manual + Bahdanau Attention
  17. LSTM Seq2Seq-manual + Bahdanau Attention
  18. GRU Seq2Seq-manual + Bahdanau Attention
  19. LSTM Bidirectional Seq2Seq-manual + Luong Attention
  20. GRU Bidirectional Seq2Seq-manual + Luong Attention
  21. LSTM Bidirectional Seq2Seq-manual + Bahdanau Attention
  22. GRU Bidirectional Seq2Seq-manual + Bahdanau Attention
  23. LSTM Bidirectional Seq2Seq-manual + backward Bahdanau + forward Luong
  24. GRU Bidirectional Seq2Seq-manual + backward Bahdanau + forward Luong
  25. LSTM Seq2Seq-API Greedy + Luong Attention
  26. GRU Seq2Seq-API Greedy + Luong Attention
  27. LSTM Seq2Seq-API Greedy + Bahdanau Attention
  28. GRU Seq2Seq-API Greedy + Bahdanau Attention
  29. LSTM Seq2Seq-API Beam Decoder
  30. GRU Seq2Seq-API Beam Decoder
  31. LSTM Bidirectional Seq2Seq-API + Luong Attention + Beam Decoder
  32. GRU Bidirectional Seq2Seq-API + Luong Attention + Beam Decoder
  33. LSTM Bidirectional Seq2Seq-API + backward Bahdanau + forward Luong + Stack Bahdanau Luong Attention + Beam Decoder
  34. GRU Bidirectional Seq2Seq-API + backward Bahdanau + forward Luong + Stack Bahdanau Luong Attention + Beam Decoder
  35. Bytenet
  36. LSTM Seq2Seq + tf.estimator
  37. Capsule layers + LSTM Seq2Seq-API Greedy
  38. Capsule layers + LSTM Seq2Seq-API + Luong Attention + Beam Decoder
  39. LSTM Bidirectional Seq2Seq-API + backward Bahdanau + forward Luong + Stack Bahdanau Luong Attention + Beam Decoder + Dropout + L2
  40. DNC Seq2Seq
  41. LSTM Bidirectional Seq2Seq-API + Luong Monotic Attention + Beam Decoder
  42. LSTM Bidirectional Seq2Seq-API + Bahdanau Monotic Attention + Beam Decoder
  43. End-to-End Memory Network + Basic cell
  44. End-to-End Memory Network + LSTM cell
  45. Attention is all you need
  46. Transformer-XL
  47. Attention is all you need + Beam Search
  48. Transformer-XL + LSTM
  49. GPT-2 + LSTM
  50. Fairseq
  51. Conv-Encoder + LSTM
  52. Tacotron + Greedy decoder
  53. Tacotron + Beam decoder
  1. Seq2Seq-manual
  2. Seq2Seq-API Greedy
  3. Bidirectional Seq2Seq-manual
  4. Bidirectional Seq2Seq-API Greedy
  5. Bidirectional Seq2Seq-manual + backward Bahdanau + forward Luong
  6. Bidirectional Seq2Seq-API + backward Bahdanau + forward Luong + Stack Bahdanau Luong Attention + Beam Decoder
  7. Bytenet
  8. Capsule layers + LSTM Seq2Seq-API + Luong Attention + Beam Decoder
  9. End-to-End Memory Network
  10. Attention is All you need
Complete list (49 notebooks)
  1. Basic cell Seq2Seq-manual
  2. LSTM Seq2Seq-manual
  3. GRU Seq2Seq-manual
  4. Basic cell Seq2Seq-API Greedy
  5. LSTM Seq2Seq-API Greedy
  6. GRU Seq2Seq-API Greedy
  7. Basic cell Bidirectional Seq2Seq-manual
  8. LSTM Bidirectional Seq2Seq-manual
  9. GRU Bidirectional Seq2Seq-manual
  10. Basic cell Bidirectional Seq2Seq-API Greedy
  11. LSTM Bidirectional Seq2Seq-API Greedy
  12. GRU Bidirectional Seq2Seq-API Greedy
  13. Basic cell Seq2Seq-manual + Luong Attention
  14. LSTM Seq2Seq-manual + Luong Attention
  15. GRU Seq2Seq-manual + Luong Attention
  16. Basic cell Seq2Seq-manual + Bahdanau Attention
  17. LSTM Seq2Seq-manual + Bahdanau Attention
  18. GRU Seq2Seq-manual + Bahdanau Attention
  19. LSTM Bidirectional Seq2Seq-manual + Luong Attention
  20. GRU Bidirectional Seq2Seq-manual + Luong Attention
  21. LSTM Bidirectional Seq2Seq-manual + Bahdanau Attention
  22. GRU Bidirectional Seq2Seq-manual + Bahdanau Attention
  23. LSTM Bidirectional Seq2Seq-manual + backward Bahdanau + forward Luong
  24. GRU Bidirectional Seq2Seq-manual + backward Bahdanau + forward Luong
  25. LSTM Seq2Seq-API Greedy + Luong Attention
  26. GRU Seq2Seq-API Greedy + Luong Attention
  27. LSTM Seq2Seq-API Greedy + Bahdanau Attention
  28. GRU Seq2Seq-API Greedy + Bahdanau Attention
  29. LSTM Seq2Seq-API Beam Decoder
  30. GRU Seq2Seq-API Beam Decoder
  31. LSTM Bidirectional Seq2Seq-API + Luong Attention + Beam Decoder
  32. GRU Bidirectional Seq2Seq-API + Luong Attention + Beam Decoder
  33. LSTM Bidirectional Seq2Seq-API + backward Bahdanau + forward Luong + Stack Bahdanau Luong Attention + Beam Decoder
  34. GRU Bidirectional Seq2Seq-API + backward Bahdanau + forward Luong + Stack Bahdanau Luong Attention + Beam Decoder
  35. Bytenet
  36. LSTM Seq2Seq + tf.estimator
  37. Capsule layers + LSTM Seq2Seq-API Greedy
  38. Capsule layers + LSTM Seq2Seq-API + Luong Attention + Beam Decoder
  39. LSTM Bidirectional Seq2Seq-API + backward Bahdanau + forward Luong + Stack Bahdanau Luong Attention + Beam Decoder + Dropout + L2
  40. DNC Seq2Seq
  41. LSTM Bidirectional Seq2Seq-API + Luong Monotic Attention + Beam Decoder
  42. LSTM Bidirectional Seq2Seq-API + Bahdanau Monotic Attention + Beam Decoder
  43. End-to-End Memory Network + Basic cell
  44. End-to-End Memory Network + LSTM cell
  45. Attention is all you need
  46. Transformer-XL
  47. Attention is all you need + Beam Search
  48. Fairseq
  49. Conv-Encoder + LSTM
  50. Bytenet Greedy
  51. Residual GRU Bidirectional Seq2Seq-API Greedy
  1. Word Vector using CBOW sample softmax
  2. Word Vector using CBOW noise contrastive estimation
  3. Word Vector using skipgram sample softmax
  4. Word Vector using skipgram noise contrastive estimation
  5. Lda2Vec Tensorflow
  6. Supervised Embedded
  7. Triplet-loss + LSTM
  8. LSTM Auto-Encoder
  9. Batch-All Triplet-loss LSTM
  10. Fast-text
  11. ELMO (biLM)
  1. Bidirectional RNN + Bahdanau Attention + CRF
  2. Bidirectional RNN + Luong Attention + CRF
  3. Bidirectional RNN + CRF
  1. Bidirectional RNN + Bahdanau Attention + CRF
  2. Bidirectional RNN + Luong Attention + CRF
  3. Bidirectional RNN + CRF
  4. Char Ngrams + Bidirectional RNN + Bahdanau Attention + CRF
  5. Char Ngrams + Residual Network + Bahdanau Attention + CRF
  6. Char Ngrams + Attention is you all Need + CRF
  1. Bidirectional RNN + Bahdanau Attention + CRF
  2. Bidirectional RNN + Luong Attention + CRF
  3. Residual Network + Bahdanau Attention + CRF
  4. Residual Network + Bahdanau Attention + Char Embedded + CRF
  5. Attention is all you need + CRF
  1. End-to-End Memory Network + Basic cell
  2. End-to-End Memory Network + GRU cell
  3. End-to-End Memory Network + LSTM cell
  4. Dynamic Memory
  1. LSTM + Seq2Seq + Beam
  2. GRU + Seq2Seq + Beam
  3. LSTM + BiRNN + Seq2Seq + Beam
  4. GRU + BiRNN + Seq2Seq + Beam
  5. DNC + Seq2Seq + Greedy
  1. LSTM Seq2Seq using topic modelling
  2. LSTM Seq2Seq + Luong Attention using topic modelling
  3. LSTM Seq2Seq + Beam Decoder using topic modelling
  4. LSTM Bidirectional + Luong Attention + Beam Decoder using topic modelling
  5. LSTM Seq2Seq + Luong Attention + Pointer Generator
  6. Bytenet
  7. Pointer-Generator + Bahdanau
  8. Copynet
  1. Skip-thought Vector
  2. Residual Network using Atrous CNN
  3. Residual Network using Atrous CNN + Bahdanau Attention
  1. CNN + LSTM RNN
  1. Tacotron
  2. Bidirectional RNN + Greedy CTC
  3. Bidirectional RNN + Beam CTC
  4. Seq2Seq + Bahdanau Attention + Beam CTC
  5. Seq2Seq + Luong Attention + Beam CTC
  6. Bidirectional RNN + Attention + Beam CTC
  7. Wavenet
  8. CNN encoder + RNN decoder + Bahdanau Attention
  9. CNN encoder + RNN decoder + Luong Attention
  10. Dilation CNN + GRU Bidirectional
  11. Deep speech 2
  1. Tacotron
  2. Wavenet
  3. Seq2Seq + Luong Attention
  4. Seq2Seq + Bahdanau Attention
  1. Character-wise RNN + LSTM
  2. Character-wise RNN + Beam search
  3. Character-wise RNN + LSTM + Embedding
  4. Word-wise RNN + LSTM
  5. Word-wise RNN + LSTM + Embedding
  6. Character-wise + Seq2Seq + GRU
  7. Word-wise + Seq2Seq + GRU
  8. Character-wise RNN + LSTM + Bahdanau Attention
  9. Character-wise RNN + LSTM + Luong Attention
  10. Word-wise + Seq2Seq + GRU + Beam
  11. Character-wise + Seq2Seq + GRU + Bahdanau Attention
  12. Word-wise + Seq2Seq + GRU + Bahdanau Attention
  1. Fast-text Char N-Grams
  1. Character wise similarity + LSTM + Bidirectional
  2. Word wise similarity + LSTM + Bidirectional
  3. Character wise similarity Triplet loss + LSTM
  4. Word wise similarity Triplet loss + LSTM
  1. Pretrained Glove
  2. VAE-seq2seq-beam
  1. Bahdanau
  2. Luong
  3. Hierarchical
  4. Additive
  5. Soft
  6. Attention-over-Attention
  7. Bahdanau API
  8. Luong API
  1. Attention heatmap on Bahdanau Attention
  2. Attention heatmap on Luong Attention
  1. Markov chatbot
  2. Decomposition summarization (3 notebooks)

About

Gathers machine learning and Tensorflow deep learning models for NLP problems

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 96.0%
  • Python 4.0%