forked from quantopian/zipline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_tradesimulation.py
126 lines (104 loc) · 4.29 KB
/
test_tradesimulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#
# Copyright 2014 Quantopian, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pandas as pd
from zipline.gens.sim_engine import BEFORE_TRADING_START_BAR
from zipline.finance.asset_restrictions import NoRestrictions
from zipline.finance import metrics
from zipline.finance.trading import SimulationParameters
from zipline.gens.tradesimulation import AlgorithmSimulator
from zipline.testing.core import parameter_space
import zipline.testing.fixtures as zf
class TestBeforeTradingStartTiming(zf.WithMakeAlgo,
zf.WithTradingSessions,
zf.ZiplineTestCase):
ASSET_FINDER_EQUITY_SIDS = (1,)
BENCHMARK_SID = 1
# These dates are chosen to cross a DST transition.
# March 2016
# Su Mo Tu We Th Fr Sa
# 1 2 3 4 5
# 6 7 8 9 10 11 12
# 13 14 15 16 17 18 19
# 20 21 22 23 24 25 26
# 27 28 29 30 31
START_DATE = pd.Timestamp('2016-03-10', tz='UTC')
END_DATE = pd.Timestamp('2016-03-15', tz='UTC')
@parameter_space(
num_sessions=[1, 2, 3],
data_frequency=['daily', 'minute'],
emission_rate=['daily', 'minute'],
__fail_fast=True,
)
def test_before_trading_start_runs_at_8_45(self,
num_sessions,
data_frequency,
emission_rate):
bts_times = []
def initialize(algo, data):
pass
def before_trading_start(algo, data):
bts_times.append(algo.get_datetime())
sim_params = SimulationParameters(
# start at index 1 so we have an extra day to calculate benchmark
# returns.
start_session=self.nyse_sessions[1],
end_session=self.nyse_sessions[num_sessions],
data_frequency=data_frequency,
emission_rate=emission_rate,
trading_calendar=self.trading_calendar,
)
self.run_algorithm(
before_trading_start=before_trading_start,
sim_params=sim_params,
)
self.assertEqual(len(bts_times), num_sessions)
expected_times = [
pd.Timestamp('2016-03-11 8:45', tz='US/Eastern').tz_convert('UTC'),
pd.Timestamp('2016-03-14 8:45', tz='US/Eastern').tz_convert('UTC'),
pd.Timestamp('2016-03-15 8:45', tz='US/Eastern').tz_convert('UTC'),
]
self.assertEqual(bts_times, expected_times[:num_sessions])
class BeforeTradingStartsOnlyClock(object):
def __init__(self, bts_minute):
self.bts_minute = bts_minute
def __iter__(self):
yield self.bts_minute, BEFORE_TRADING_START_BAR
class TestBeforeTradingStartSimulationDt(zf.WithMakeAlgo, zf.ZiplineTestCase):
SIM_PARAMS_DATA_FREQUENCY = 'daily'
DATA_PORTAL_USE_MINUTE_DATA = False
def test_bts_simulation_dt(self):
code = """
def initialize(context):
pass
"""
algo = self.make_algo(script=code, metrics=metrics.load('none'))
algo.metrics_tracker = algo._create_metrics_tracker()
benchmark_source = algo._create_benchmark_source()
algo.metrics_tracker.handle_start_of_simulation(benchmark_source)
dt = pd.Timestamp("2016-08-04 9:13:14", tz='US/Eastern')
algo_simulator = AlgorithmSimulator(
algo,
self.sim_params,
self.data_portal,
BeforeTradingStartsOnlyClock(dt),
benchmark_source,
NoRestrictions(),
None
)
# run through the algo's simulation
list(algo_simulator.transform())
# since the clock only ever emitted a single before_trading_start
# event, we can check that the simulation_dt was properly set
self.assertEqual(dt, algo_simulator.simulation_dt)