-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreference.html
1381 lines (1280 loc) · 89.4 KB
/
reference.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<html><head><meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"><title>Boost.MultiArray Reference Manual</title><meta name="generator" content="DocBook XSL Stylesheets V1.76.1"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="article" title="Boost.MultiArray Reference Manual"><div class="titlepage"><div><div><h2 class="title"><a name="idp2304"></a>Boost.MultiArray Reference Manual</h2></div><div><div class="author"><h3 class="author"><span class="firstname">Ronald</span> <span class="surname">Garcia</span></h3><div class="affiliation"><span class="orgname">Indiana University<br></span> <span class="orgdiv">Open Systems Lab<br></span></div></div></div><div><p class="copyright">Copyright © 2002 The Trustees of Indiana University</p></div></div><hr></div><div class="toc"><p><b>Table of Contents</b></p><dl><dt><span class="sect1"><a href="#synopsis">Library Synopsis</a></span></dt><dt><span class="sect1"><a href="#MultiArray">MultiArray Concept</a></span></dt><dd><dl><dt><span class="sect2"><a href="#idp18427760">Notation</a></span></dt><dt><span class="sect2"><a href="#idp18446208">Associated Types</a></span></dt><dt><span class="sect2"><a href="#idp18501744">Valid expressions</a></span></dt><dt><span class="sect2"><a href="#idp18588736">Complexity guarantees</a></span></dt><dt><span class="sect2"><a href="#idp18591264">Invariants</a></span></dt><dt><span class="sect2"><a href="#view_types">Associated Types for Views</a></span></dt><dt><span class="sect2"><a href="#idp18737792">Models</a></span></dt></dl></dd><dt><span class="sect1"><a href="#array_types">Array Components</a></span></dt><dd><dl><dt><span class="sect2"><a href="#multi_array_class"><code class="literal">multi_array</code></a></span></dt><dt><span class="sect2"><a href="#multi_array_ref"><code class="literal">multi_array_ref</code></a></span></dt><dt><span class="sect2"><a href="#const_multi_array_ref"><code class="literal">const_multi_array_ref</code></a></span></dt></dl></dd><dt><span class="sect1"><a href="#auxiliary">Auxiliary Components</a></span></dt><dd><dl><dt><span class="sect2"><a href="#multi_array_types"><code class="literal">multi_array_types</code></a></span></dt><dt><span class="sect2"><a href="#extent_range"><code class="classname">extent_range</code></a></span></dt><dt><span class="sect2"><a href="#extent_gen"><code class="classname">extent_gen</code></a></span></dt><dt><span class="sect2"><a href="#idp19487120">Global Objects</a></span></dt><dt><span class="sect2"><a href="#generators">View and SubArray Generators</a></span></dt><dt><span class="sect2"><a href="#memory_layout">Memory Layout Specifiers</a></span></dt><dt><span class="sect2"><a href="#range_checking">Range Checking</a></span></dt></dl></dd></dl></div><p>Boost.MultiArray is composed of several components.
The MultiArray concept defines a generic interface to multidimensional
containers.
<code class="literal">multi_array</code> is a general purpose container class
that models MultiArray. <code class="literal">multi_array_ref</code>
and <code class="literal">const_multi_array_ref</code> are adapter
classes. Using them,
you can manipulate any block of contiguous data as though it were a
<code class="literal">multi_array</code>.
<code class="literal">const_multi_array_ref</code> differs from
<code class="literal">multi_array_ref</code> in that its elements cannot
be modified through its interface. Finally, several auxiliary classes are used
to create and specialize arrays and some global objects are defined as
part of the library interface.</p><div class="sect1" title="Library Synopsis"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="synopsis"></a>Library Synopsis</h2></div></div></div><p>To use Boost.MultiArray, you must include the header
<code class="filename">boost/multi_array.hpp</code> in your source. This file
brings the following declarations into scope:</p><pre class="programlisting">
namespace boost {
namespace multi_array_types {
typedef *unspecified* index;
typedef *unspecified* size_type;
typedef *unspecified* difference_type;
typedef *unspecified* index_range;
typedef *unspecified* extent_range;
typedef *unspecified* index_gen;
typedef *unspecified* extent_gen;
}
template <typename ValueType,
std::size_t NumDims,
typename Allocator = std::allocator<ValueType> >
class multi_array;
template <typename ValueType,
std::size_t NumDims>
class multi_array_ref;
template <typename ValueType,
std::size_t NumDims>
class const_multi_array_ref;
multi_array_types::extent_gen extents;
multi_array_types::index_gen indices;
template <typename Array, int N> class subarray_gen;
template <typename Array, int N> class const_subarray_gen;
template <typename Array, int N> class array_view_gen;
template <typename Array, int N> class const_array_view_gen;
class c_storage_order;
class fortran_storage_order;
template <std::size_t NumDims> class general_storage_order;
}
</pre></div><div class="sect1" title="MultiArray Concept"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="MultiArray"></a>MultiArray Concept</h2></div></div></div><p>The MultiArray
concept defines an interface to hierarchically nested
containers. It specifies operations for accessing elements,
traversing containers, and creating views
of array data.
MultiArray defines
a flexible memory model that accomodates
a variety of data layouts.
</p><p>
At each level (or dimension) of a MultiArray's
container hierarchy lie a set of ordered containers, each of which
contains the same number and type of values. The depth of this
container hierarchy is the MultiArray's <span class="emphasis"><em>dimensionality</em></span>.
MultiArray is recursively defined; the
containers at each level of the container hierarchy model
MultiArray as well. While each dimension of a MultiArray
has its own size, the list of sizes for all dimensions
defines the <span class="emphasis"><em>shape</em></span> of the entire MultiArray.
At the base of this hierarchy lie 1-dimensional
MultiArrays. Their values are the contained
objects of interest and not part of the container hierarchy. These are
the MultiArray's elements.
</p><p>
Like other container concepts, MultiArray exports
iterators to traverse its values. In addition, values can be
addressed directly using the familiar bracket notation.
</p><p>
MultiArray also specifies
routines for creating
specialized views. A <span class="emphasis"><em>view</em></span> lets you treat a
subset of the underlying
elements in a MultiArray as though it were a separate
MultiArray. Since a view refers to the same underlying elements,
changes made to a view's elements will be reflected in the original
MultiArray. For
example, given a 3-dimensional "cube" of elements, a 2-dimensional
slice can be viewed as if it were an independent
MultiArray.
Views are created using <code class="literal">index_gen</code> and
<code class="literal">index_range</code> objects.
<code class="literal">index_range</code>s denote elements from a certain
dimension that are to be included in a
view. <code class="literal">index_gen</code> aggregates range data and performs
bookkeeping to determine the view type to be returned.
MultiArray's <code class="literal">operator[]</code>
must be passed the result
of <code class="literal">N</code> chained calls to
<code class="literal">index_gen::operator[]</code>, i.e.
</p><pre class="programlisting">indices[a0][a1]...[aN];
</pre><p>
where <code class="literal">N</code> is the
MultiArray's dimensionality and
<code class="literal">indices</code> an object of type <code class="literal">index_gen</code>.
The view type is dependent upon the number of degenerate dimensions
specified to <code class="literal">index_gen</code>. A degenerate dimension
occurs when a single-index is specified to
<code class="literal">index_gen</code> for a certain dimension. For example, if
<code class="literal">indices</code> is an object of type
<code class="literal">index_gen</code>, then the following example:
</p><pre class="programlisting">indices[index_range(0,5)][2][index_range(0,4)];
</pre><p>
has a degenerate second dimension. The view generated from the above
specification will have 2 dimensions with shape <code class="literal">5 x 4</code>.
If the "<code class="literal">2</code>" above were replaced with
another <code class="literal">index_range</code> object, for example:
</p><pre class="programlisting">indices[index_range(0,5)][index_range(0,2)][index_range(0,4)];
</pre><p>
then the view would have 3 dimensions.</p><p>
MultiArray exports
information regarding the memory
layout of its contained elements. Its memory model for elements is
completely defined by 4 properties: the origin, shape, index bases,
and strides. The origin is the address in memory of the element
accessed as <code class="literal">a[0][0]...[0]</code>, where
<code class="literal">a</code> is a MultiArray. The shape is a list of numbers
specifying the size of containers at each dimension. For example, the
first extent is the size of the outermost container, the second extent
is the size of its subcontainers, and so on. The index bases are a
list of signed values specifying the index of the first value in a
container. All containers at the same dimension share the same index
base. Note that since positive index bases are
possible, the origin need not exist in order to determine the location
in memory of the MultiArray's elements.
The strides determine how index values are mapped to memory offsets.
They accomodate a
number of possible element layouts. For example, the elements of a 2
dimensional array can be stored by row (i.e., the elements of each row
are stored contiguously) or by column (i.e., the elements of each
column are stored contiguously).
</p><p>
Two concept checking classes for the MultiArray concepts
(<code class="literal">ConstMultiArrayConcept</code> and
<code class="literal">MutableMultiArrayConcept</code>) are in the namespace
<code class="literal">boost::multi_array_concepts</code> in
<code class="literal"><boost/multi_array/concept_checks.hpp></code>.
</p><div class="sect2" title="Notation"><div class="titlepage"><div><div><h3 class="title"><a name="idp18427760"></a>Notation</h3></div></div></div><p>What follows are the descriptions of symbols that will be used
to describe the MultiArray interface.</p><div class="table"><a name="idp18428768"></a><p class="title"><b>Table 1. Notation</b></p><div class="table-contents"><table summary="Notation" border="1"><colgroup><col><col></colgroup><tbody><tr><td><code class="literal">A</code></td><td>A type that is a model of MultiArray
</td></tr><tr><td><code class="literal">a,b</code></td><td>Objects of type <code class="literal">A</code></td></tr><tr><td><code class="literal">NumDims</code></td><td>The numeric dimension parameter associated with
<code class="literal">A</code>.</td></tr><tr><td><code class="literal">Dims</code></td><td>Some numeric dimension parameter such that
<code class="literal">0<Dims<NumDims</code>.
</td></tr><tr><td><code class="literal">indices</code></td><td>An object created by some number of chained calls
to <code class="literal">index_gen::operator[](index_range)</code>.</td></tr><tr><td><code class="literal">index_list</code></td><td>An object whose type models
<a class="ulink" href="../../utility/Collection.html" target="_top">Collection</a>
</td></tr><tr><td><code class="literal">idx</code></td><td>A signed integral value.</td></tr><tr><td><code class="literal">tmp</code></td><td>An object of type
<code class="literal">boost::array<index,NumDims></code></td></tr></tbody></table></div></div><br class="table-break"></div><div class="sect2" title="Associated Types"><div class="titlepage"><div><div><h3 class="title"><a name="idp18446208"></a>Associated Types</h3></div></div></div><p>
</p><div class="table"><a name="idp18447104"></a><p class="title"><b>Table 2. Associated Types</b></p><div class="table-contents"><table summary="Associated Types" border="1"><colgroup><col><col></colgroup><thead><tr><th>Type</th><th>Description</th></tr></thead><tbody><tr><td><code class="literal">value_type</code></td><td>This is the value type of the container.
If <code class="literal">NumDims == 1</code>, then this is
<code class="literal">element</code>. Otherwise, this is the value type of the
immediately nested containers.
</td></tr><tr><td>
<code class="literal">reference</code>
</td><td>
This is the reference type of the contained value.
If <code class="literal">NumDims == 1</code>, then this is
<code class="literal">element&</code>. Otherwise, this is the same type as
<code class="literal">template subarray<NumDims-1>::type</code>.
</td></tr><tr><td>
<code class="literal">const_reference</code>
</td><td>
This is the const reference type of the contained value.
If <code class="literal">NumDims == 1</code>, then this is
<code class="literal">const element&</code>. Otherwise, this is the same
type as
<code class="literal">template const_subarray<NumDims-1>::type</code>.
</td></tr><tr><td>
<code class="literal">size_type</code>
</td><td>
This is an unsigned integral type. It is primarily used to specify array shape.
</td></tr><tr><td>
<code class="literal">difference_type</code>
</td><td>
This is a signed integral type used to represent the distance between two
iterators. It is the same type as
<code class="literal">std::iterator_traits<iterator>::difference_type</code>.
</td></tr><tr><td><code class="literal">iterator</code></td><td>
This is an iterator over the values of <code class="literal">A</code>.
If <code class="literal">NumDims == 1</code>, then it models
<a class="ulink" href="http://www.boost.org/doc/html/RandomAccessIterator.html" target="_top">
<code class="literal">Random Access Iterator</code></a>.
Otherwise it models
<a class="ulink" href="./iterator_categories.html#concept_RandomAccessTraversalIterator" target="_top">
Random Access Traversal Iterator</a>,
<a class="ulink" href="./iterator_categories.html#concept_ReadableIterator" target="_top">
Readable Iterator</a>,
<a class="ulink" href="./iterator_categories.html#concept_WritableIterator" target="_top">
Writable Iterator</a>, and
<a class="ulink" href="http://www.boost.org/doc/html/OutputIterator.html" target="_top">
<code class="literal">Output Iterator</code></a>.
</td></tr><tr><td>
<code class="literal">const_iterator</code>
</td><td>
This is the const iterator over the values of <code class="literal">A</code>.
</td></tr><tr><td>
<code class="literal">reverse_iterator</code>
</td><td>
This is the reversed iterator, used to iterate backwards over the values of
<code class="literal">A</code>.
</td></tr><tr><td>
<code class="literal">const_reverse_iterator</code>
</td><td>
This is the reversed const iterator.
<code class="literal">A</code>.
</td></tr><tr><td>
<code class="literal">element</code>
</td><td>
This is the type of objects stored at the base of the
hierarchy of MultiArrays. It is the same as
<code class="literal">template subarray<1>::value_type</code>
</td></tr><tr><td>
<code class="literal">index</code>
</td><td>
This is a signed integral type used for indexing into <code class="literal">A</code>. It
is also used to represent strides and index bases.
</td></tr><tr><td>
<code class="literal">index_gen</code>
</td><td>
This type is used to create a tuple of <code class="literal">index_range</code>s
passed to <code class="literal">operator[]</code> to create
an <code class="literal">array_view<Dims>::type</code> object.
</td></tr><tr><td>
<code class="literal">index_range</code>
</td><td>
This type specifies a range of indices over some dimension of a
MultiArray. This range will be visible through an
<code class="literal">array_view<Dims>::type</code> object.
</td></tr><tr><td>
<code class="literal">template subarray<Dims>::type</code>
</td><td>
This is subarray type with <code class="literal">Dims</code> dimensions.
It is the reference type of the <code class="literal">(NumDims - Dims)</code>
dimension of <code class="literal">A</code> and also models
MultiArray.
</td></tr><tr><td>
<code class="literal">template const_subarray<Dims>::type</code>
</td><td>
This is the const subarray type.
</td></tr><tr><td>
<code class="literal">template array_view<Dims>::type</code>
</td><td>
This is the view type with <code class="literal">Dims</code> dimensions. It is
returned by calling <code class="literal">operator[](<code class="literal">indices</code>)</code>.
It models MultiArray.
</td></tr><tr><td>
<code class="literal">template
const_array_view<Dims>::type</code>
</td><td>
This is the const view type with <code class="literal">Dims</code> dimensions.
</td></tr></tbody></table></div></div><br class="table-break"></div><div class="sect2" title="Valid expressions"><div class="titlepage"><div><div><h3 class="title"><a name="idp18501744"></a>Valid expressions</h3></div></div></div><div class="table"><a name="idp18502256"></a><p class="title"><b>Table 3. Valid Expressions</b></p><div class="table-contents"><table summary="Valid Expressions" border="1"><colgroup><col><col><col></colgroup><thead><tr><th>Expression</th><th>Return type</th><th>Semantics</th></tr></thead><tbody><tr><td><code class="literal">A::dimensionality</code></td><td><code class="literal">size_type</code></td><td>This compile-time constant represents the number of
dimensions of the array (note that
<code class="literal">A::dimensionality == NumDims</code>).</td></tr><tr><td><code class="literal">a.shape()</code></td><td><code class="literal">const size_type*</code></td><td>
This returns a list of <code class="literal">NumDims</code> elements specifying the
extent of each array dimension.
</td></tr><tr><td><code class="literal">a.strides()</code></td><td><code class="literal">const index*</code></td><td>
This returns a list of <code class="literal">NumDims</code> elements specifying the
stride associated with each array dimension. When accessing values,
strides is used to calculate an element's location in memory.
</td></tr><tr><td><code class="literal">a.index_bases()</code></td><td><code class="literal">const index*</code></td><td>
This returns a list of <code class="literal">NumDims</code> elements specifying the
numeric index of the first element for each array dimension.
</td></tr><tr><td><code class="literal">a.origin()</code></td><td>
<code class="literal">element*</code> if <code class="literal">a</code> is mutable,
<code class="literal">const element*</code> otherwise.
</td><td>
This returns the address of the element accessed by the expression
<code class="literal">a[0][0]...[0].</code>. If the index bases are positive,
this element won't exist, but the address can still be used to locate
a valid element given its indices.
</td></tr><tr><td><code class="literal">a.num_dimensions()</code></td><td><code class="literal">size_type</code></td><td>This returns the number of dimensions of the array
(note that <code class="literal">a.num_dimensions() == NumDims</code>).</td></tr><tr><td><code class="literal">a.num_elements()</code></td><td><code class="literal">size_type</code></td><td>This returns the number of elements contained
in the array. It is equivalent to the following code:
<pre class="programlisting">
std::accumulate(a.shape(),a.shape+a.num_dimensions(),
size_type(1),std::multiplies<size_type>());
</pre>
</td></tr><tr><td><code class="literal">a.size()</code></td><td><code class="literal">size_type</code></td><td>
This returns the number of values contained in
<code class="literal">a</code>. It is equivalent to <code class="literal">a.shape()[0];</code>
</td></tr><tr><td><code class="literal">a(index_list)</code></td><td>
<code class="literal">element&</code>; if <code class="literal">a</code> is mutable,
<code class="literal">const element&</code> otherwise.
</td><td>
This expression accesses a specific element of
<code class="literal">a</code>.<code class="literal">index_list</code> is the unique set
of indices that address the element returned. It is
equivalent to the following code (disregarding intermediate temporaries):
<pre class="programlisting">
// multiply indices by strides
std::transform(index_list.begin(), index_list.end(),
a.strides(), tmp.begin(), std::multiplies<index>()),
// add the sum of the products to the origin
*std::accumulate(tmp.begin(), tmp.end(), a.origin());
</pre>
</td></tr><tr><td><code class="literal">a.begin()</code></td><td>
<code class="literal">iterator</code> if <code class="literal">a</code> is mutable,
<code class="literal">const_iterator</code> otherwise.
</td><td>This returns an iterator pointing to the beginning of
<code class="literal">a</code>.</td></tr><tr><td><code class="literal">a.end()</code></td><td>
<code class="literal">iterator</code> if <code class="literal">a</code> is mutable,
<code class="literal">const_iterator</code> otherwise.
</td><td>This returns an iterator pointing to the end of
<code class="literal">a</code>.</td></tr><tr><td><code class="literal">a.rbegin()</code></td><td>
<code class="literal">reverse_iterator</code> if <code class="literal">a</code> is mutable,
<code class="literal">const_reverse_iterator</code> otherwise.
</td><td>This returns a reverse iterator pointing to the
beginning of <code class="literal">a</code> reversed.
</td></tr><tr><td><code class="literal">a.rend()</code></td><td>
<code class="literal">reverse_iterator</code> if <code class="literal">a</code> is mutable,
<code class="literal">const_reverse_iterator</code> otherwise.
</td><td>
This returns a reverse iterator pointing to the end of <code class="literal">a</code>
reversed.
</td></tr><tr><td><code class="literal">a[idx]</code></td><td>
<code class="literal">reference</code> if <code class="literal">a</code> is mutable,
<code class="literal">const_reference</code> otherwise.
</td><td>
This returns a reference type that is bound to the index
<code class="literal">idx</code> value of <code class="literal">a</code>. Note that if
<code class="literal">i</code> is the index base for this dimension, the above
expression returns the <code class="literal">(idx-i)</code>th element (counting
from zero). The expression is equivalent to
<code class="literal">*(a.begin()+idx-a.index_bases()[0]);</code>.
</td></tr><tr><td><code class="literal">a[indices]</code></td><td>
<code class="literal">array_view<Dims>::type</code> if
<code class="literal">a</code> is mutable,
<code class="literal">const_array_view<Dims>::type</code> otherwise.
</td><td>
This expression generates a view of the array determined by the
<code class="literal">index_range</code> and <code class="literal">index</code> values
used to construct <code class="literal">indices</code>.
</td></tr><tr><td><code class="literal">a == b</code></td><td>bool</td><td>This performs a lexicographical comparison of the
values of <code class="literal">a</code> and <code class="literal">b</code>. The element
type must model <a class="ulink" href="http://www.sgi.com/tech/stl/EqualityComparable.html" target="_top">EqualityComparable</a> for this
expression to be valid.</td></tr><tr><td><code class="literal">a < b</code></td><td>bool</td><td>This performs a lexicographical comparison of the
values of <code class="literal">a</code> and <code class="literal">b</code>. The element
type must model <a class="ulink" href="http://www.sgi.com/tech/stl/LessThanComparable.html" target="_top">LessThanComparable</a> for this
expression to be valid.</td></tr><tr><td><code class="literal">a <= b</code></td><td>bool</td><td>This performs a lexicographical comparison of the
values of <code class="literal">a</code> and <code class="literal">b</code>. The element
type must model <a class="ulink" href="http://www.sgi.com/tech/stl/EqualityComparable.html" target="_top">EqualityComparable</a> and
<a class="ulink" href="http://www.sgi.com/tech/stl/LessThanComparable.html" target="_top">LessThanComparable</a> for this
expression to be valid.</td></tr><tr><td><code class="literal">a > b</code></td><td>bool</td><td>This performs a lexicographical comparison of the
values of <code class="literal">a</code> and <code class="literal">b</code>. The element
type must model <a class="ulink" href="http://www.sgi.com/tech/stl/EqualityComparable.html" target="_top">EqualityComparable</a> and
<a class="ulink" href="http://www.sgi.com/tech/stl/LessThanComparable.html" target="_top">LessThanComparable</a> for this
expression to be valid.</td></tr><tr><td><code class="literal">a >= b</code></td><td>bool</td><td>This performs a lexicographical comparison of the
values of <code class="literal">a</code> and <code class="literal">b</code>. The element
type must model <a class="ulink" href="http://www.sgi.com/tech/stl/LessThanComparable.html" target="_top">LessThanComparable</a> for this
expression to be valid.</td></tr></tbody></table></div></div><br class="table-break"></div><div class="sect2" title="Complexity guarantees"><div class="titlepage"><div><div><h3 class="title"><a name="idp18588736"></a>Complexity guarantees</h3></div></div></div><code class="literal">begin()</code> and <code class="literal">end()</code> execute in amortized
constant time.
<code class="literal">size()</code> executes in at most linear time in the
MultiArray's size.
</div><div class="sect2" title="Invariants"><div class="titlepage"><div><div><h3 class="title"><a name="idp18591264"></a>Invariants</h3></div></div></div><div class="table"><a name="idp18591904"></a><p class="title"><b>Table 4. Invariants</b></p><div class="table-contents"><table summary="Invariants" border="1"><colgroup><col><col></colgroup><tbody><tr><td>Valid range</td><td><code class="literal">[a.begin(),a.end())</code> is a valid range.
</td></tr><tr><td>Range size</td><td>
<code class="literal">a.size() == std::distance(a.begin(),a.end());</code>.
</td></tr><tr><td>Completeness</td><td>
Iteration through the range
<code class="literal">[a.begin(),a.end())</code> will traverse across every
<code class="literal">value_type</code> of <code class="literal">a</code>.
</td></tr><tr><td>Accessor Equivalence</td><td>
Calling <code class="literal">a[a1][a2]...[aN]</code> where <code class="literal">N==NumDims</code>
yields the same result as calling
<code class="literal">a(index_list)</code>, where <code class="literal">index_list</code>
is a <a class="ulink" href="../../utility/Collection.html" target="_top">Collection</a> containing the values <code class="literal">a1...aN</code>.
</td></tr></tbody></table></div></div><br class="table-break"></div><div class="sect2" title="Associated Types for Views"><div class="titlepage"><div><div><h3 class="title"><a name="view_types"></a>Associated Types for Views</h3></div></div></div><p>The following MultiArray associated
types define the interface for creating views of existing
MultiArrays. Their interfaces and roles in the
concept are described below.</p><div class="sect3" title="index_range"><div class="titlepage"><div><div><h4 class="title"><a name="index_range"></a><code class="literal">index_range</code></h4></div></div></div><p><code class="literal">index_range</code> objects represent half-open
strided intervals. They are aggregated (using an
<code class="literal">index_gen</code> object) and passed to
a MultiArray's <code class="literal">operator[]</code>
to create an array view. When creating a view,
each <code class="literal">index_range</code> denotes a range of
valid indices along one dimension of a MultiArray.
Elements that are accessed through the set of ranges specified will be
included in the constructed view. In some cases, an
<code class="literal">index_range</code> is created without specifying start
or finish values. In those cases, the object is interpreted to
start at the beginning of a MultiArray dimension
and end at its end.</p><p>
<code class="literal">index_range</code> objects can be constructed and modified
several ways in order to allow convenient and clear expression of a
range of indices. To specify ranges, <code class="literal">index_range</code>
supports a set of constructors, mutating member functions, and a novel
specification involving inequality operators. Using inequality
operators, a half open range [5,10) can be specified as follows:
</p><pre class="programlisting">5 <= index_range() < 10;</pre><p> or
</p><pre class="programlisting">4 < index_range() <= 9;</pre><p> and so on.
The following describes the
<code class="literal">index_range</code> interface.
</p><div class="table"><a name="idp18614960"></a><p class="title"><b>Table 5. Notation</b></p><div class="table-contents"><table summary="Notation" border="1"><colgroup><col><col></colgroup><tbody><tr><td><code class="literal">i</code></td><td>An object of type <code class="literal">index_range</code>.</td></tr><tr><td><code class="literal">idx,idx1,idx2,idx3</code></td><td>Objects of type <code class="literal">index</code>.</td></tr></tbody></table></div></div><br class="table-break"><div class="table"><a name="idp18620944"></a><p class="title"><b>Table 6. Associated Types</b></p><div class="table-contents"><table summary="Associated Types" border="1"><colgroup><col><col></colgroup><thead><tr><th>Type</th><th>Description</th></tr></thead><tbody><tr><td><code class="literal">index</code></td><td>This is a signed integral type. It is used to
specify the start, finish, and stride values.</td></tr><tr><td><code class="literal">size_type</code></td><td>This is an unsigned integral type. It is used to
report the size of the range an <code class="literal">index_range</code>
represents.</td></tr></tbody></table></div></div><br class="table-break"><div class="table"><a name="idp18627920"></a><p class="title"><b>Table 7. Valid Expressions</b></p><div class="table-contents"><table summary="Valid Expressions" border="1"><colgroup><col><col><col></colgroup><thead><tr><th>Expression</th><th>Return type</th><th>Semantics</th></tr></thead><tbody><tr><td><code class="literal">index_range(idx1,idx2,idx3)</code></td><td><code class="literal">index_range</code></td><td>This constructs an <code class="literal">index_range</code>
representing the interval <code class="literal">[idx1,idx2)</code>
with stride <code class="literal">idx3</code>.</td></tr><tr><td><code class="literal">index_range(idx1,idx2)</code></td><td><code class="literal">index_range</code></td><td>This constructs an <code class="literal">index_range</code>
representing the interval <code class="literal">[idx1,idx2)</code>
with unit stride. It is equivalent to
<code class="literal">index_range(idx1,idx2,1)</code>.</td></tr><tr><td><code class="literal">index_range()</code></td><td><code class="literal">index_range</code></td><td>This construct an <code class="literal">index_range</code>
with unspecified start and finish values.</td></tr><tr><td><code class="literal">i.start(idx1)</code></td><td><code class="literal">index&</code></td><td>This sets the start index of <code class="literal">i</code> to
<code class="literal">idx</code>.</td></tr><tr><td><code class="literal">i.finish(idx)</code></td><td><code class="literal">index&</code></td><td>This sets the finish index of <code class="literal">i</code> to
<code class="literal">idx</code>.</td></tr><tr><td><code class="literal">i.stride(idx)</code></td><td><code class="literal">index&</code></td><td>This sets the stride length of <code class="literal">i</code> to
<code class="literal">idx</code>.</td></tr><tr><td><code class="literal">i.start()</code></td><td><code class="literal">index</code></td><td>This returns the start index of <code class="literal">i</code>.</td></tr><tr><td><code class="literal">i.finish()</code></td><td><code class="literal">index</code></td><td>This returns the finish index of <code class="literal">i</code>.</td></tr><tr><td><code class="literal">i.stride()</code></td><td><code class="literal">index</code></td><td>This returns the stride length of <code class="literal">i</code>.</td></tr><tr><td><code class="literal">i.get_start(idx)</code></td><td><code class="literal">index</code></td><td>If <code class="literal">i</code> specifies a start
value, this is equivalent to <code class="literal">i.start()</code>. Otherwise it
returns <code class="literal">idx</code>.</td></tr><tr><td><code class="literal">i.get_finish(idx)</code></td><td><code class="literal">index</code></td><td>If <code class="literal">i</code> specifies a finish
value, this is equivalent to <code class="literal">i.finish()</code>. Otherwise it
returns <code class="literal">idx</code>.</td></tr><tr><td><code class="literal">i.size(idx)</code></td><td><code class="literal">size_type</code></td><td>If <code class="literal">i</code> specifies a both finish and
start values, this is equivalent to
<code class="literal">(i.finish()-i.start())/i.stride()</code>. Otherwise it
returns <code class="literal">idx</code>.</td></tr><tr><td><code class="literal">i < idx</code></td><td><code class="literal">index</code></td><td>This is another syntax for specifying the finish
value. This notation does not include
<code class="literal">idx</code> in the range of valid indices. It is equivalent to
<code class="literal">index_range(r.start(), idx, r.stride())</code></td></tr><tr><td><code class="literal">i <= idx</code></td><td><code class="literal">index</code></td><td>This is another syntax for specifying the finish
value. This notation includes
<code class="literal">idx</code> in the range of valid indices. It is equivalent to
<code class="literal">index_range(r.start(), idx + 1, r.stride())</code></td></tr><tr><td><code class="literal">idx < i</code></td><td><code class="literal">index</code></td><td>This is another syntax for specifying the start
value. This notation does not include
<code class="literal">idx</code> in the range of valid indices. It is equivalent to
<code class="literal">index_range(idx + 1, i.finish(), i.stride())</code>.</td></tr><tr><td><code class="literal">idx <= i</code></td><td><code class="literal">index</code></td><td>This is another syntax for specifying the start
value. This notation includes
<code class="literal">idx1</code> in the range of valid indices. It is equivalent to
<code class="literal">index_range(idx, i.finish(), i.stride())</code>.</td></tr><tr><td><code class="literal">i + idx</code></td><td><code class="literal">index</code></td><td>This expression shifts the start and finish values
of <code class="literal">i</code> up by <code class="literal">idx</code>. It is equivalent to
<code class="literal">index_range(r.start()+idx1, r.finish()+idx, r.stride())</code></td></tr><tr><td><code class="literal">i - idx</code></td><td><code class="literal">index</code></td><td>This expression shifts the start and finish values
of <code class="literal">i</code> up by <code class="literal">idx</code>. It is equivalent to
<code class="literal">index_range(r.start()-idx1, r.finish()-idx, r.stride())</code></td></tr></tbody></table></div></div><br class="table-break"></div><div class="sect3" title="index_gen"><div class="titlepage"><div><div><h4 class="title"><a name="index_gen"></a><code class="literal">index_gen</code></h4></div></div></div><p> <code class="literal">index_gen</code> aggregates
<code class="literal">index_range</code> objects in order to specify view
parameters. Chained calls to <code class="literal">operator[]</code> store
range and dimension information used to
instantiate a new view into a MultiArray.
</p><div class="table"><a name="idp18699808"></a><p class="title"><b>Table 8. Notation</b></p><div class="table-contents"><table summary="Notation" border="1"><colgroup><col><col></colgroup><tbody><tr><td><code class="literal">Dims,Ranges</code></td><td>Unsigned integral values.</td></tr><tr><td><code class="literal">x</code></td><td>An object of type
<code class="literal">template gen_type<Dims,Ranges>::type</code>.</td></tr><tr><td><code class="literal">i</code></td><td>An object of type
<code class="literal">index_range</code>.</td></tr><tr><td><code class="literal">idx</code></td><td>Objects of type <code class="literal">index</code>.</td></tr></tbody></table></div></div><br class="table-break"><div class="table"><a name="idp18709408"></a><p class="title"><b>Table 9. Associated Types</b></p><div class="table-contents"><table summary="Associated Types" border="1"><colgroup><col><col></colgroup><thead><tr><th>Type</th><th>Description</th></tr></thead><tbody><tr><td><code class="literal">index</code></td><td>This is a signed integral type. It is used to
specify degenerate dimensions.</td></tr><tr><td><code class="literal">size_type</code></td><td>This is an unsigned integral type. It is used to
report the size of the range an <code class="literal">index_range</code>
represents.</td></tr><tr><td>
<code class="literal">template gen_type::<Dims,Ranges>::type</code></td><td>This type generator names the result of
<code class="literal">Dims</code> chained calls to
<code class="literal">index_gen::operator[]</code>. The
<code class="literal">Ranges</code> parameter is determined by the number of
degenerate ranges specified (i.e. calls to
<code class="literal">operator[](index)</code>). Note that
<code class="classname">index_gen</code> and
<code class="classname">gen_type<0,0>::type</code> are the same type.</td></tr></tbody></table></div></div><br class="table-break"><div class="table"><a name="idp18721296"></a><p class="title"><b>Table 10. Valid Expressions</b></p><div class="table-contents"><table summary="Valid Expressions" border="1"><colgroup><col><col><col></colgroup><thead><tr><th>Expression</th><th>Return type</th><th>Semantics</th></tr></thead><tbody><tr><td><code class="literal">index_gen()</code></td><td><code class="literal">gen_type<0,0>::type</code></td><td>This constructs an <code class="literal">index_gen</code>
object. This object can then be used to generate tuples of
<code class="literal">index_range</code> values.</td></tr><tr><td><code class="literal">x[i]</code></td><td><code class="literal">gen_type<Dims+1,Ranges+1>::type</code>
</td><td>Returns a new object containing all previous
<code class="classname">index_range</code> objects in addition to
<code class="literal">i.</code> Chained calls to
<code class="function">operator[]</code> are the means by which
<code class="classname">index_range</code> objects are aggregated.</td></tr><tr><td><code class="literal">x[idx]</code></td><td><code class="literal">gen_type<Dims,Ranges+1>::type</code>
</td><td>Returns a new object containing all previous
<code class="classname">index_range</code> objects in addition to a degenerate
range, <code class="literal">index_range(idx,idx).</code> Note that this is NOT
equivalent to <code class="literal">x[index_range(idx,idx)].</code>, which will
return an object of type
<code class="literal">gen_type<Dims+1,Ranges+1>::type</code>.
</td></tr></tbody></table></div></div><br class="table-break"></div></div><div class="sect2" title="Models"><div class="titlepage"><div><div><h3 class="title"><a name="idp18737792"></a>Models</h3></div></div></div><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><code class="literal">multi_array</code></li><li class="listitem"><code class="literal">multi_array_ref</code></li><li class="listitem"><code class="literal">const_multi_array_ref</code></li><li class="listitem"><code class="literal">template array_view<Dims>::type</code></li><li class="listitem"><code class="literal">template const_array_view<Dims>::type</code></li><li class="listitem"><code class="literal">template subarray<Dims>::type</code></li><li class="listitem"><code class="literal">template const_subarray<Dims>::type</code></li></ul></div></div></div><div class="sect1" title="Array Components"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="array_types"></a>Array Components</h2></div></div></div><p>
Boost.MultiArray defines an array class,
<code class="literal">multi_array</code>, and two adapter classes,
<code class="literal">multi_array_ref</code> and
<code class="literal">const_multi_array_ref</code>. The three classes model
MultiArray and so they share a lot of functionality.
<code class="literal">multi_array_ref</code> differs from
<code class="literal">multi_array</code> in that the
<code class="literal">multi_array</code> manages its own memory, while
<code class="literal">multi_array_ref</code> is passed a block of memory that it
expects to be externally managed.
<code class="literal">const_multi_array_ref</code> differs from
<code class="literal">multi_array_ref</code> in that the underlying elements it
adapts cannot be modified through its interface, though some array
properties, including the array shape and index bases, can be altered.
Functionality the classes have in common is described
below.
</p><p title="Note: Preconditions, Effects, and Implementation"><b>Note: Preconditions, Effects, and Implementation. </b>
Throughout the following sections, small pieces of C++ code are
used to specify constraints such as preconditions, effects, and
postconditions. These do not necessarily describe the underlying
implementation of array components; rather, they describe the
expected input to and
behavior of the specified operations. Failure to meet
preconditions results in undefined behavior. Not all effects
(i.e. copy constructors, etc.) must be mimicked exactly. The code
snippets for effects intend to capture the essence of the described
operation.
</p><p title="Queries"><b>Queries. </b></p><div class="variablelist"><dl><dt><span class="term"><pre class="programlisting">element* data();
const element* data() const;</pre></span></dt><dd><p>This returns a pointer to the beginning of the
contiguous block that contains the array's data. If all dimensions of
the array are 0-indexed and stored in ascending order, this is
equivalent to <code class="literal">origin()</code>. Note that
<code class="literal">const_multi_array_ref</code> only provides the const
version of this function.
</p></dd><dt><span class="term"><pre class="programlisting">element* origin();
const element* origin() const;</pre></span></dt><dd><p>This returns the origin element of the
<code class="literal">multi_array</code>. Note that
<code class="literal">const_multi_array_ref</code> only provides the const
version of this function. (Required by MultiArray)
</p></dd><dt><span class="term"><code class="function">const index* index_bases();</code></span></dt><dd><p>This returns the index bases for the
<code class="literal">multi_array</code>. (Required by MultiArray)
</p></dd><dt><span class="term"><code class="function">const index* strides();</code></span></dt><dd><p>This returns the strides for the
<code class="literal">multi_array</code>. (Required by MultiArray)
</p></dd><dt><span class="term"><code class="function">const size_type* shape();</code></span></dt><dd><p>This returns the shape of the
<code class="literal">multi_array</code>. (Required by MultiArray)
</p></dd></dl></div><p title="Comparators"><b>Comparators. </b></p><div class="variablelist"><dl><dt><span class="term"><pre class="programlisting">
bool operator==(const *array-type*& rhs);
bool operator!=(const *array-type*& rhs);
bool operator<(const *array-type*& rhs);
bool operator>(const *array-type*& rhs);
bool operator>=(const *array-type*& rhs);
bool operator<=(const *array-type*& rhs);</pre></span></dt><dd><p>Each comparator executes a lexicographical compare over
the value types of the two arrays.
(Required by MultiArray)
</p><p title="Preconditions"><b>Preconditions. </b><code class="literal">element</code> must support the
comparator corresponding to that called on
<code class="literal">multi_array</code>.</p><p title="Complexity"><b>Complexity. </b>O(<code class="literal">num_elements()</code>).</p></dd></dl></div><p title="Modifiers"><b>Modifiers. </b></p><div class="variablelist"><dl><dt><span class="term">
<pre class="programlisting">
template <typename SizeList>
void reshape(const SizeList& sizes)
</pre>
</span></dt><dd><p>This changes the shape of the <code class="literal">multi_array</code>. The
number of elements and the index bases remain the same, but the number
of values at each level of the nested container hierarchy may
change.</p><p title="SizeList Requirements"><b><code class="literal">SizeList</code> Requirements. </b><code class="literal">SizeList</code> must model
<a class="ulink" href="../../utility/Collection.html" target="_top">Collection</a>.</p><p title="Preconditions"><b>Preconditions. </b>
</p><pre class="programlisting">
std::accumulate(sizes.begin(),sizes.end(),size_type(1),std::times<size_type>()) == this->num_elements();
sizes.size() == NumDims;
</pre><p title="Postconditions"><b>Postconditions. </b>
<code class="literal">std::equal(sizes.begin(),sizes.end(),this->shape) == true;</code>
</p></dd><dt><span class="term">
<pre class="programlisting">
template <typename BaseList>
void reindex(const BaseList& values);
</pre>
</span></dt><dd><p>This changes the index bases of the <code class="literal">multi_array</code> to
correspond to the the values in <code class="literal">values</code>.</p><p title="BaseList Requirements"><b><code class="literal">BaseList</code> Requirements. </b><code class="literal">BaseList</code> must model
<a class="ulink" href="../../utility/Collection.html" target="_top">Collection</a>.</p><p title="Preconditions"><b>Preconditions. </b><code class="literal">values.size() == NumDims;</code></p><p title="Postconditions"><b>Postconditions. </b><code class="literal">std::equal(values.begin(),values.end(),this->index_bases());
</code></p></dd><dt><span class="term">
<pre class="programlisting">
void reindex(index value);
</pre>
</span></dt><dd><p>This changes the index bases of all dimensions of the
<code class="literal">multi_array</code> to <code class="literal">value</code>.</p><p title="Postconditions"><b>Postconditions. </b>
</p><pre class="programlisting">
std::count_if(this->index_bases(),this->index_bases()+this->num_dimensions(),
std::bind_2nd(std::equal_to<index>(),value)) ==
this->num_dimensions();
</pre><p title="Postconditions">
</p></dd></dl></div><div class="sect2" title="multi_array"><div class="titlepage"><div><div><h3 class="title"><a name="multi_array_class"></a><code class="literal">multi_array</code></h3></div></div></div><p>
<code class="literal">multi_array</code> is a multi-dimensional container that
supports random access iteration. Its number of dimensions is
fixed at compile time, but its shape and the number of elements it
contains are specified during its construction. The number of elements
will remain fixed for the duration of a
<code class="literal">multi_array</code>'s lifetime, but the shape of the container can
be changed. A <code class="literal">multi_array</code> manages its data elements
using a replaceable allocator.
</p><p title="Model Of."><b>Model Of. </b>
<a class="link" href="#MultiArray" title="MultiArray Concept">MultiArray</a>,
<a class="ulink" href="../../../libs/utility/CopyConstructible.html" target="_top">CopyConstructible</a>. Depending on the element type,
it may also model <a class="ulink" href="http://www.sgi.com/tech/stl/EqualityComparable.html" target="_top">EqualityComparable</a> and <a class="ulink" href="http://www.sgi.com/tech/stl/LessThanComparable.html" target="_top">LessThanComparable</a>.
</p><p title="Synopsis"><b>Synopsis. </b></p><pre class="programlisting">
namespace boost {
template <typename ValueType,
std::size_t NumDims,
typename Allocator = std::allocator<ValueType> >
class multi_array {
public:
// types:
typedef ValueType element;
typedef *unspecified* value_type;
typedef *unspecified* reference;
typedef *unspecified* const_reference;
typedef *unspecified* difference_type;
typedef *unspecified* iterator;
typedef *unspecified* const_iterator;
typedef *unspecified* reverse_iterator;
typedef *unspecified* const_reverse_iterator;
typedef multi_array_types::size_type size_type;
typedef multi_array_types::index index;
typedef multi_array_types::index_gen index_gen;
typedef multi_array_types::index_range index_range;
typedef multi_array_types::extent_gen extent_gen;
typedef multi_array_types::extent_range extent_range;
typedef *unspecified* storage_order_type;
// template typedefs
template <std::size_t Dims> struct subarray;
template <std::size_t Dims> struct const_subarray;
template <std::size_t Dims> struct array_view;
template <std::size_t Dims> struct const_array_view;
static const std::size_t dimensionality = NumDims;
// constructors and destructors
multi_array();
template <typename ExtentList>
explicit multi_array(const ExtentList& sizes,
const storage_order_type& store = c_storage_order(),
const Allocator& alloc = Allocator());
explicit multi_array(const extents_tuple& ranges,
const storage_order_type& store = c_storage_order(),
const Allocator& alloc = Allocator());
multi_array(const multi_array& x);
multi_array(const const_multi_array_ref<ValueType,NumDims>& x);
multi_array(const const_subarray<NumDims>::type& x);
multi_array(const const_array_view<NumDims>::type& x);
multi_array(const multi_array_ref<ValueType,NumDims>& x);
multi_array(const subarray<NumDims>::type& x);
multi_array(const array_view<NumDims>::type& x);
~multi_array();
// modifiers
multi_array& operator=(const multi_array& x);
template <class Array> multi_array& operator=(const Array& x);
// iterators:
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
reverse_iterator rbegin();
reverse_iterator rend();
const_reverse_iterator rbegin() const;
const_reverse_iterator rend() const;
// capacity:
size_type size() const;
size_type num_elements() const;
size_type num_dimensions() const;
// element access:
template <typename IndexList>
element& operator()(const IndexList& indices);
template <typename IndexList>
const element& operator()(const IndexList& indices) const;
reference operator[](index i);
const_reference operator[](index i) const;
array_view<Dims>::type operator[](const indices_tuple& r);
const_array_view<Dims>::type operator[](const indices_tuple& r) const;
// queries
element* data();
const element* data() const;
element* origin();
const element* origin() const;
const size_type* shape() const;
const index* strides() const;
const index* index_bases() const;
const storage_order_type& storage_order() const;
// comparators
bool operator==(const multi_array& rhs);
bool operator!=(const multi_array& rhs);
bool operator<(const multi_array& rhs);
bool operator>(const multi_array& rhs);
bool operator>=(const multi_array& rhs);
bool operator<=(const multi_array& rhs);
// modifiers:
template <typename InputIterator>
void assign(InputIterator begin, InputIterator end);
template <typename SizeList>
void reshape(const SizeList& sizes)
template <typename BaseList> void reindex(const BaseList& values);
void reindex(index value);
template <typename ExtentList>
multi_array& resize(const ExtentList& extents);
multi_array& resize(extents_tuple& extents);
};
</pre><p title="Constructors"><b>Constructors. </b></p><div class="variablelist"><dl><dt><span class="term"><pre class="programlisting">template <typename ExtentList>
explicit multi_array(const ExtentList& sizes,
const storage_order_type& store = c_storage_order(),
const Allocator& alloc = Allocator());
</pre></span></dt><dd><p>
This constructs a <code class="literal">multi_array</code> using the specified
parameters. <code class="literal">sizes</code> specifies the shape of the
constructed <code class="literal">multi_array</code>. <code class="literal">store</code>
specifies the storage order or layout in memory of the array
dimensions. <code class="literal">alloc</code> is used to
allocate the contained elements.
</p><p title="ExtentList Requirements"><b><code class="literal">ExtentList</code> Requirements. </b>
<code class="literal">ExtentList</code> must model <a class="ulink" href="../../utility/Collection.html" target="_top">Collection</a>.
</p><p title="Preconditions"><b>Preconditions. </b><code class="literal">sizes.size() == NumDims;</code></p></dd><dt><span class="term">
<pre class="programlisting">explicit multi_array(extent_gen::gen_type<NumDims>::type ranges,
const storage_order_type& store = c_storage_order(),
const Allocator& alloc = Allocator());
</pre></span></dt><dd><p>
This constructs a <code class="literal">multi_array</code> using the specified
parameters. <code class="literal">ranges</code> specifies the shape and
index bases of the constructed multi_array. It is the result of
<code class="literal">NumDims</code> chained calls to
<code class="literal">extent_gen::operator[]</code>. <code class="literal">store</code>
specifies the storage order or layout in memory of the array
dimensions. <code class="literal">alloc</code> is the allocator used to
allocate the memory used to store <code class="literal">multi_array</code>
elements.
</p></dd><dt><span class="term"><pre class="programlisting">
multi_array(const multi_array& x);
multi_array(const const_multi_array_ref<ValueType,NumDims>& x);
multi_array(const const_subarray<NumDims>::type& x);
multi_array(const const_array_view<NumDims>::type& x);
multi_array(const multi_array_ref<ValueType,NumDims>& x);
multi_array(const subarray<NumDims>::type& x);
multi_array(const array_view<NumDims>::type& x);
</pre></span></dt><dd><p>These constructors all constructs a <code class="literal">multi_array</code> and
perform a deep copy of <code class="literal">x</code>.
</p><p title="Complexity"><b>Complexity. </b> This performs O(<code class="literal">x.num_elements()</code>) calls to
<code class="literal">element</code>'s copy
constructor.
</p></dd><dt><span class="term"><pre class="programlisting">
multi_array();
</pre></span></dt><dd><p>This constructs a <code class="literal">multi_array</code> whose shape is (0,...,0) and contains no elements.
</p></dd></dl></div><p title="Note on Constructors"><b>Note on Constructors. </b>
The <code class="literal">multi_array</code> construction expressions,
</p><pre class="programlisting">
multi_array<int,3> A(boost::extents[5][4][3]);
</pre><p title="Note on Constructors">
and
</p><pre class="programlisting">
boost::array<multi_array_base::index,3> my_extents = {{5, 4, 3}};
multi_array<int,3> A(my_extents);
</pre><p title="Note on Constructors">
are equivalent.
</p><p title="Modifiers"><b>Modifiers. </b></p><div class="variablelist"><dl><dt><span class="term"><pre class="programlisting">
multi_array& operator=(const multi_array& x);
template <class Array> multi_array& operator=(const Array& x);
</pre>
</span></dt><dd><p>This performs an element-wise copy of <code class="literal">x</code>
into the current <code class="literal">multi_array</code>.</p><p title="Array Requirements"><b><code class="literal">Array</code> Requirements. </b><code class="literal">Array</code> must model MultiArray.
</p><p title="Preconditions"><b>Preconditions. </b>
</p><pre class="programlisting">std::equal(this->shape(),this->shape()+this->num_dimensions(),
x.shape());</pre><p title="Postconditions"><b>Postconditions. </b>
</p><pre class="programlisting">(*.this) == x;</pre><p title="Postconditions">
</p><p title="Complexity"><b>Complexity. </b>The assignment operators perform
O(<code class="literal">x.num_elements()</code>) calls to <code class="literal">element</code>'s
copy constructor.</p></dd><dt><span class="term">
<pre class="programlisting">
template <typename InputIterator>
void assign(InputIterator begin, InputIterator end);
</pre>
</span></dt><dd><p>This copies the elements in the range
<code class="literal">[begin,end)</code> into the array. It is equivalent to
<code class="literal">std::copy(begin,end,this->data())</code>.
</p><p title="Preconditions"><b>Preconditions. </b><code class="literal">std::distance(begin,end) == this->num_elements();</code>
</p><p title="Complexity"><b>Complexity. </b>
The <code class="literal">assign</code> member function performs
O(<code class="literal">this->num_elements()</code>) calls to
<code class="literal">ValueType</code>'s copy constructor.
</p></dd><dt><span class="term">
<pre class="programlisting">multi_array& resize(extent_gen::gen_type<NumDims>::type extents);
template <typename ExtentList>
multi_array& resize(const ExtentList& extents);
</pre></span></dt><dd><p>
This function resizes an array to the shape specified by
<code class="literal">extents</code>, which is either a generated list of
extents or a model of the <code class="literal">Collection</code> concept. The
contents of the array are preserved whenever possible; if the new
array size is smaller, then some data will be lost. Any new elements
created by resizing the array are initialized with the
<code class="literal">element</code> default constructor.
</p></dd></dl></div><p title="Queries"><b>Queries. </b></p><div class="variablelist"><dl><dt><span class="term"><pre class="programlisting">
storage_order_type& storage_order() const;
</pre>
</span></dt><dd><p>This query returns the storage order object associated with the
<code class="literal">multi_array</code> in question. It can be used to construct a new array with the same storage order.</p></dd></dl></div></div><div class="sect2" title="multi_array_ref"><div class="titlepage"><div><div><h3 class="title"><a name="multi_array_ref"></a><code class="literal">multi_array_ref</code></h3></div></div></div><p>
<code class="literal">multi_array_ref</code> is a multi-dimensional container
adaptor. It provides the MultiArray interface over any contiguous
block of elements. <code class="literal">multi_array_ref</code> exports the
same interface as <code class="literal">multi_array</code>, with the exception
of the constructors.
</p><p title="Model Of."><b>Model Of. </b>
<code class="literal">multi_array_ref</code> models
<a class="link" href="#MultiArray" title="MultiArray Concept">MultiArray</a>,
<a class="ulink" href="../../../libs/utility/CopyConstructible.html" target="_top">CopyConstructible</a>.
and depending on the element type, it may also model
<a class="ulink" href="http://www.sgi.com/tech/stl/EqualityComparable.html" target="_top">EqualityComparable</a> and <a class="ulink" href="http://www.sgi.com/tech/stl/LessThanComparable.html" target="_top">LessThanComparable</a>.
Detailed descriptions are provided here only for operations that are
not described in the <code class="literal">multi_array</code> reference.
</p><p title="Synopsis"><b>Synopsis. </b></p><pre class="programlisting">
namespace boost {
template <typename ValueType,
std::size_t NumDims>
class multi_array_ref {
public:
// types:
typedef ValueType element;
typedef *unspecified* value_type;
typedef *unspecified* reference;
typedef *unspecified* const_reference;
typedef *unspecified* difference_type;
typedef *unspecified* iterator;
typedef *unspecified* const_iterator;
typedef *unspecified* reverse_iterator;
typedef *unspecified* const_reverse_iterator;
typedef multi_array_types::size_type size_type;
typedef multi_array_types::index index;
typedef multi_array_types::index_gen index_gen;
typedef multi_array_types::index_range index_range;
typedef multi_array_types::extent_gen extent_gen;
typedef multi_array_types::extent_range extent_range;
typedef *unspecified* storage_order_type;
// template typedefs
template <std::size_t Dims> struct subarray;
template <std::size_t Dims> struct const_subarray;
template <std::size_t Dims> struct array_view;
template <std::size_t Dims> struct const_array_view;
static const std::size_t dimensionality = NumDims;
// constructors and destructors
template <typename ExtentList>
explicit multi_array_ref(element* data, const ExtentList& sizes,
const storage_order_type& store = c_storage_order());
explicit multi_array_ref(element* data, const extents_tuple& ranges,
const storage_order_type& store = c_storage_order());
multi_array_ref(const multi_array_ref& x);
~multi_array_ref();
// modifiers
multi_array_ref& operator=(const multi_array_ref& x);
template <class Array> multi_array_ref& operator=(const Array& x);
// iterators:
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
reverse_iterator rbegin();
reverse_iterator rend();
const_reverse_iterator rbegin() const;
const_reverse_iterator rend() const;
// capacity:
size_type size() const;
size_type num_elements() const;
size_type num_dimensions() const;
// element access:
template <typename IndexList>
element& operator()(const IndexList& indices);
template <typename IndexList>
const element& operator()(const IndexList& indices) const;
reference operator[](index i);
const_reference operator[](index i) const;
array_view<Dims>::type operator[](const indices_tuple& r);
const_array_view<Dims>::type operator[](const indices_tuple& r) const;
// queries
element* data();
const element* data() const;
element* origin();
const element* origin() const;
const size_type* shape() const;
const index* strides() const;
const index* index_bases() const;
const storage_order_type& storage_order() const;
// comparators
bool operator==(const multi_array_ref& rhs);
bool operator!=(const multi_array_ref& rhs);
bool operator<(const multi_array_ref& rhs);
bool operator>(const multi_array_ref& rhs);
bool operator>=(const multi_array_ref& rhs);
bool operator<=(const multi_array_ref& rhs);
// modifiers:
template <typename InputIterator>
void assign(InputIterator begin, InputIterator end);
template <typename SizeList>
void reshape(const SizeList& sizes)
template <typename BaseList> void reindex(const BaseList& values);
void reindex(index value);
};
</pre><p title="Constructors"><b>Constructors. </b></p><div class="variablelist"><dl><dt><span class="term"><pre class="programlisting">template <typename ExtentList>
explicit multi_array_ref(element* data,
const ExtentList& sizes,
const storage_order& store = c_storage_order(),
const Allocator& alloc = Allocator());
</pre></span></dt><dd><p>
This constructs a <code class="literal">multi_array_ref</code> using the specified
parameters. <code class="literal">sizes</code> specifies the shape of the
constructed <code class="literal">multi_array_ref</code>. <code class="literal">store</code>
specifies the storage order or layout in memory of the array
dimensions. <code class="literal">alloc</code> is used to
allocate the contained elements.
</p><p title="ExtentList Requirements"><b><code class="literal">ExtentList</code> Requirements. </b>
<code class="literal">ExtentList</code> must model <a class="ulink" href="../../utility/Collection.html" target="_top">Collection</a>.
</p><p title="Preconditions"><b>Preconditions. </b><code class="literal">sizes.size() == NumDims;</code></p></dd><dt><span class="term">
<pre class="programlisting">explicit multi_array_ref(element* data,
extent_gen::gen_type<NumDims>::type ranges,
const storage_order& store = c_storage_order());
</pre></span></dt><dd><p>
This constructs a <code class="literal">multi_array_ref</code> using the specified
parameters. <code class="literal">ranges</code> specifies the shape and
index bases of the constructed multi_array_ref. It is the result of
<code class="literal">NumDims</code> chained calls to
<code class="literal">extent_gen::operator[]</code>. <code class="literal">store</code>
specifies the storage order or layout in memory of the array
dimensions.
</p></dd><dt><span class="term"><pre class="programlisting">
multi_array_ref(const multi_array_ref& x);
</pre></span></dt><dd><p>This constructs a shallow copy of <code class="literal">x</code>.
</p><p title="Complexity"><b>Complexity. </b> Constant time (for contrast, compare this to
the <code class="literal">multi_array</code> class copy constructor.
</p></dd></dl></div><p title="Modifiers"><b>Modifiers. </b></p><div class="variablelist"><dl><dt><span class="term"><pre class="programlisting">
multi_array_ref& operator=(const multi_array_ref& x);
template <class Array> multi_array_ref& operator=(const Array& x);
</pre>
</span></dt><dd><p>This performs an element-wise copy of <code class="literal">x</code>
into the current <code class="literal">multi_array_ref</code>.</p><p title="Array Requirements"><b><code class="literal">Array</code> Requirements. </b><code class="literal">Array</code> must model MultiArray.
</p><p title="Preconditions"><b>Preconditions. </b>
</p><pre class="programlisting">std::equal(this->shape(),this->shape()+this->num_dimensions(),
x.shape());</pre><p title="Postconditions"><b>Postconditions. </b>
</p><pre class="programlisting">(*.this) == x;</pre><p title="Postconditions">
</p><p title="Complexity"><b>Complexity. </b>The assignment operators perform
O(<code class="literal">x.num_elements()</code>) calls to <code class="literal">element</code>'s
copy constructor.</p></dd></dl></div></div><div class="sect2" title="const_multi_array_ref"><div class="titlepage"><div><div><h3 class="title"><a name="const_multi_array_ref"></a><code class="literal">const_multi_array_ref</code></h3></div></div></div><p>
<code class="literal">const_multi_array_ref</code> is a multi-dimensional container
adaptor. It provides the MultiArray interface over any contiguous
block of elements. <code class="literal">const_multi_array_ref</code> exports the
same interface as <code class="literal">multi_array</code>, with the exception
of the constructors.
</p><p title="Model Of."><b>Model Of. </b>
<code class="literal">const_multi_array_ref</code> models
<a class="link" href="#MultiArray" title="MultiArray Concept">MultiArray</a>,
<a class="ulink" href="../../../libs/utility/CopyConstructible.html" target="_top">CopyConstructible</a>.
and depending on the element type, it may also model
<a class="ulink" href="http://www.sgi.com/tech/stl/EqualityComparable.html" target="_top">EqualityComparable</a> and <a class="ulink" href="http://www.sgi.com/tech/stl/LessThanComparable.html" target="_top">LessThanComparable</a>.
Detailed descriptions are provided here only for operations that are
not described in the <code class="literal">multi_array</code> reference.
</p><p title="Synopsis"><b>Synopsis. </b></p><pre class="programlisting">
namespace boost {
template <typename ValueType,
std::size_t NumDims,
typename TPtr = const T*>
class const_multi_array_ref {
public:
// types:
typedef ValueType element;
typedef *unspecified* value_type;
typedef *unspecified* reference;
typedef *unspecified* const_reference;
typedef *unspecified* difference_type;
typedef *unspecified* iterator;