-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathpymatching_comparison.py
220 lines (187 loc) · 9.37 KB
/
pymatching_comparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import math
from typing import List, Callable, Set, Tuple
import pymatching
import networkx as nx
import numpy as np
import stim
import os
import typer
import tqdm
import time
def nx_graph_to_pymatching(g: nx.Graph) -> pymatching.Matching:
for _, _, d in g.edges(data=True):
d["fault_ids"] = set_bits(d["observables"])
max_node_id = max(g.nodes())
max_fault_id = max(max(d["fault_ids"], default=0) for _, _, d in g.edges(data=True))
g.add_edge(max_node_id, max_node_id + 1, weight=1, fault_ids=max_fault_id)
for i in range(len(g.nodes)):
g.nodes[i]["is_boundary"] = g.nodes[i].get("boundary", False)
g.nodes[max_node_id + 1]["is_boundary"] = True
return pymatching.Matching(g)
def detector_error_model_to_discretised_pymatching_graph(
model: stim.DetectorErrorModel, num_buckets: int = 1000
) -> pymatching.Matching:
graph = detector_error_model_to_nx_graph(model)
graph = discretize_weights(graph, num_buckets)
return nx_graph_to_pymatching(graph)
def detector_error_model_to_pymatching_graph(
model: stim.DetectorErrorModel
) -> pymatching.Matching:
graph = detector_error_model_to_nx_graph(model)
return nx_graph_to_pymatching(graph)
def int_to_binary_array(n: int, num_bits: int) -> np.ndarray:
obs_list = [int(i) for i in bin(n)[:1:-1]]
obs_list += [0] * (num_bits - len(obs_list))
return np.array(obs_list, dtype=np.uint8)
def set_bits(n: int) -> Set[int]:
return {i for i, c in enumerate(bin(n)[:1:-1]) if c == '1'}
def discretize_weights(g: nx.Graph, num_buckets) -> nx.Graph:
max_weight = max(abs(float(e[2].get("weight", 1))) for e in g.edges(data=True))
for u, v, d in g.edges(data=True):
d["weight"] = 2 * round(num_buckets * (float(d.get("weight", 1)) / max_weight))
return g
def detector_error_model_to_nx_graph(model: stim.DetectorErrorModel) -> nx.Graph:
"""Convert a stim error model into a NetworkX graph.
From: https://github.com/quantumlib/Stim/blob/main/doc/getting_started.ipynb"""
g = nx.Graph()
boundary_node = model.num_detectors
g.add_node(boundary_node, boundary=True, coords=[-1, -1, -1])
def handle_error(p: float, dets: List[int], frame_changes: int):
if p == 0:
return
if len(dets) == 0:
# No symptoms for this error.
# Code probably has distance 1.
# Accept it and keep going, though of course decoding will probably perform terribly.
return
if len(dets) == 1:
dets = [dets[0], boundary_node]
if len(dets) > 2:
raise NotImplementedError(
f"Error with more than 2 symptoms can't become an edge or boundary edge: {dets!r}.")
if g.has_edge(*dets):
edge_data = g.get_edge_data(*dets)
old_p = edge_data["error_probability"]
old_frame_changes = edge_data["observables"]
# If frame changes differ, the code has distance 2; just keep whichever was first.
if old_frame_changes == frame_changes:
p = p * (1 - old_p) + old_p * (1 - p)
g.remove_edge(*dets)
g.add_edge(*dets, weight=math.log((1 - p) / p), observables=frame_changes, error_probability=p)
def handle_detector_coords(detector: int, coords: np.ndarray):
g.add_node(detector, coords=coords)
eval_model(model, handle_error, handle_detector_coords)
return g
def eval_model(
model: stim.DetectorErrorModel,
handle_error: Callable[[float, List[int], int], None],
handle_detector_coords: Callable[[int, np.ndarray], None]):
"""Interprets the error model instructions, taking care of loops and shifts.
Adapted from: https://github.com/quantumlib/Stim/blob/main/doc/getting_started.ipynb
Makes callbacks as error mechanisms are declared, and also when detector
coordinate data is declared.
"""
det_offset = 0
coords_offset = np.zeros(100, dtype=np.float64)
def _helper(m: stim.DetectorErrorModel, reps: int):
nonlocal det_offset
nonlocal coords_offset
for _ in range(reps):
for instruction in m:
if isinstance(instruction, stim.DemRepeatBlock):
_helper(instruction.body_copy(), instruction.repeat_count)
elif isinstance(instruction, stim.DemInstruction):
if instruction.type == "error":
dets: List[int] = []
frames: int = 0
t: stim.DemTarget
p = instruction.args_copy()[0]
for t in instruction.targets_copy():
if t.is_relative_detector_id():
dets.append(t.val + det_offset)
elif t.is_logical_observable_id():
frames ^= 2**t.val
elif t.is_separator():
# Treat each component of a decomposed error as an independent error.
# (Ideally we could configure some sort of correlated analysis; oh well.)
handle_error(p, dets, frames)
frames = 0
dets = []
# Handle last component.
handle_error(p, dets, frames)
elif instruction.type == "shift_detectors":
det_offset += instruction.targets_copy()[0]
a = np.array(instruction.args_copy())
coords_offset[:len(a)] += a
elif instruction.type == "detector":
a = np.array(instruction.args_copy())
for t in instruction.targets_copy():
handle_detector_coords(t.val + det_offset, a + coords_offset[:len(a)])
elif instruction.type == "logical_observable":
pass
else:
raise NotImplementedError()
else:
raise NotImplementedError()
_helper(model, 1)
def obs_array_to_obs_mask(obs_array: np.ndarray) -> int:
obs_mask: int = 0
for i, b in enumerate(obs_array):
obs_mask ^= 1 << i if b else 0
return obs_mask
def decode_with_pymatching(model: stim.DetectorErrorModel, samples: np.ndarray,
num_buckets: int = 1000, num_neighbours: int = -1,
verbose: bool = False, show_time: bool = False, show_failures: bool = False,
show_weights: bool = False, max_shots: int = None, show_predictions: bool = False) -> None:
num_neighbours = None if num_neighbours == -1 else num_neighbours
if num_buckets is not None:
matching = detector_error_model_to_discretised_pymatching_graph(model, num_buckets=num_buckets)
else:
matching = detector_error_model_to_pymatching_graph(model)
dets = samples[:, 0:model.num_detectors]
obs = samples[:, model.num_detectors:model.num_detectors+model.num_observables]
num_failures = 0
it = tqdm.tqdm(dets) if verbose else dets
if num_neighbours is None:
matching.matching_graph.compute_all_pairs_shortest_paths()
i = 0
t0 = time.time()
for s in it:
obs_pred, weight = matching.decode(s, return_weight=True, num_neighbours=num_neighbours)
if show_weights:
if num_buckets is not None:
print(int(weight))
else:
print(weight)
if show_failures:
num_failures += not np.array_equal(obs[i, :].astype(np.uint8), obs_pred.astype(np.uint8))
if show_predictions:
obs_mask = obs_array_to_obs_mask(obs_pred)
print(obs_mask)
i += 1
if max_shots is not None and i >= max_shots:
break
t1 = time.time()
if show_time:
print(f"{(t1-t0)*1e6/i}")
if show_failures:
print(f"{num_failures} {i}")
def decode_with_pymatching_from_files(model_fn: str, samples_fn: str, num_buckets: int = None,
num_neighbours: int = -1, verbose: bool = False,
show_time: bool = False, show_failures: bool = False,
show_weights: bool = False, max_shots: int = None,
show_predictions: bool = False):
dem = stim.DetectorErrorModel.from_file(model_fn)
_, extension = os.path.splitext(samples_fn)
samples = stim.read_shot_data_file(path=samples_fn, format=extension[1:],
num_measurements=0, num_detectors=dem.num_detectors,
num_observables=dem.num_observables)
decode_with_pymatching(dem, samples, num_buckets=num_buckets,
num_neighbours=num_neighbours, verbose=verbose,
show_time=show_time, show_failures=show_failures, show_weights=show_weights,
max_shots=max_shots, show_predictions=show_predictions)
if __name__ == "__main__":
# This command line tool can be used to generate predictions and MWPM solution weights
# using the previous version of pymatching (e.g. pymatching v0.7.0), for testing purposes.
# To run this script, first `pip install pymatching==0.7.0 networkx numpy stim typer tqdm`
typer.run(decode_with_pymatching_from_files)