diff --git a/experimental/LieAlgebras/src/Util.jl b/experimental/LieAlgebras/src/Util.jl index 87da4f8f2a7c..65fb4355b0e0 100644 --- a/experimental/LieAlgebras/src/Util.jl +++ b/experimental/LieAlgebras/src/Util.jl @@ -24,7 +24,6 @@ function coefficient_vector(M::MatElem{T}, basis::Vector{<:MatElem{T}}) where {T for i in 1:nr, j in 1:nc rhs[(i - 1) * nc + j, 1] = M[i, j] end - fl, sol = can_solve_with_solution(lgs, rhs; side = :right) - @assert fl + sol = solve(lgs, rhs; side = :right) return transpose(sol) end diff --git a/experimental/LinearQuotients/src/cox_rings.jl b/experimental/LinearQuotients/src/cox_rings.jl index 0f1ef2128fff..e92e09690d7f 100644 --- a/experimental/LinearQuotients/src/cox_rings.jl +++ b/experimental/LinearQuotients/src/cox_rings.jl @@ -43,8 +43,7 @@ function action_on_basis(G::FinGenAbGroup, G_action::Function, polys::Vector{<: # Little bit of a waste to recompute the rref of M all the time. # But I don't see how to do it better and mats should not contain many # elements anyways. - fl, sol = can_solve_with_solution(M, N, side = :left) - @assert fl + sol = solve(M, N, side = :left) push!(res, sol) end @@ -140,8 +139,7 @@ function fill_degree!(HBB::HomBasisBuilder, d::Int) M = vcat(M, N) end - fl, sol = can_solve_with_solution(V, M, side = :left) - @assert fl + sol = solve(V, M, side = :left) # The i-th row of sol gives the coefficient of inhom_gens[row_to_gen[i]] in # the basis hom_basisd. diff --git a/experimental/Rings/QQAbAndPChars.jl b/experimental/Rings/QQAbAndPChars.jl index 6c3f4edb455f..ff4991eb4188 100644 --- a/experimental/Rings/QQAbAndPChars.jl +++ b/experimental/Rings/QQAbAndPChars.jl @@ -44,9 +44,8 @@ end function (Chi::PartialCharacter)(b::ZZMatrix) @assert nrows(b) == 1 @assert Nemo.ncols(b) == Nemo.ncols(Chi.A) - s = can_solve_with_solution(Chi.A, b, side = :left) - @assert s[1] - return evaluate(FacElem(Dict([(Chi.b[i], s[2][1, i]) for i = 1:length(Chi.b)]))) + s = solve(Chi.A, b, side = :left) + return evaluate(FacElem(Dict([(Chi.b[i], s[1, i]) for i = 1:length(Chi.b)]))) end function (Chi::PartialCharacter)(b::Vector{ZZRingElem}) diff --git a/experimental/SymmetricIntersections/src/representations.jl b/experimental/SymmetricIntersections/src/representations.jl index 85fc208b7cef..10615d90451a 100644 --- a/experimental/SymmetricIntersections/src/representations.jl +++ b/experimental/SymmetricIntersections/src/representations.jl @@ -1316,8 +1316,7 @@ function quotient_representation(rep::LinRep{S, T, U}, M::W) where {S, T, U, W < mr = matrix_representation(rep) coll = eltype(mr)[] for m in mr - ok, mm = can_solve_with_solution(proj, m*proj; side=:right) - @assert ok + mm = solve(proj, m*proj; side=:right) push!(coll, mm) end repQ = _linear_representation(representation_ring(rep), coll) diff --git a/src/InvariantTheory/affine_algebra.jl b/src/InvariantTheory/affine_algebra.jl index 0bd6e7984956..354a30cf9c48 100644 --- a/src/InvariantTheory/affine_algebra.jl +++ b/src/InvariantTheory/affine_algebra.jl @@ -203,8 +203,7 @@ function relations_primary_and_irreducible_secondary(RG::InvRing) # Write the products (in N) in the basis of K[V]^G_d given by the secondary # invariants (in M) - fl, x = can_solve_with_solution(M, N, side = :left) - @assert fl + x = solve(M, N, side = :left) # Translate the relations to the free algebra S for i = 1:nrows(x) @@ -308,8 +307,7 @@ function module_syzygies(RG::InvRing) monomial_to_column = enumerate_monomials(gens_d) M = polys_to_smat(gens_d, monomial_to_column) N = polys_to_smat(s_invars_d, monomial_to_column) - fl, sol = can_solve_with_solution(M, N, side = :left) - @assert fl + sol = solve(M, N, side = :left) for i in 1:length(s_invars_d) a = F()