diff --git a/test/book/specialized/brandhorst-zach-fibration-hopping/vinberg_2.jlcon b/test/book/specialized/brandhorst-zach-fibration-hopping/vinberg_2.jlcon index b0aecaf23268..f6ca4fda0078 100644 --- a/test/book/specialized/brandhorst-zach-fibration-hopping/vinberg_2.jlcon +++ b/test/book/specialized/brandhorst-zach-fibration-hopping/vinberg_2.jlcon @@ -50,7 +50,26 @@ with default covering 6: [(z//y), (x//y), s] julia> piS = weierstrass_contraction(Y1) -Composite morphism of[...] +Composite morphism of + Hom: elliptic surface with generic fiber -x^3 + y^2 - t^7 + 2*t^6 - t^5 -> scheme over QQ covered with 44 patches + Hom: scheme over QQ covered with 44 patches -> scheme over QQ covered with 40 patches + Hom: scheme over QQ covered with 40 patches -> scheme over QQ covered with 38 patches + Hom: scheme over QQ covered with 38 patches -> scheme over QQ covered with 36 patches + Hom: scheme over QQ covered with 36 patches -> scheme over QQ covered with 32 patches + Hom: scheme over QQ covered with 32 patches -> scheme over QQ covered with 30 patches + Hom: scheme over QQ covered with 30 patches -> scheme over QQ covered with 28 patches + Hom: scheme over QQ covered with 28 patches -> scheme over QQ covered with 26 patches + Hom: scheme over QQ covered with 26 patches -> scheme over QQ covered with 24 patches + Hom: scheme over QQ covered with 24 patches -> scheme over QQ covered with 22 patches + Hom: scheme over QQ covered with 22 patches -> scheme over QQ covered with 20 patches + Hom: scheme over QQ covered with 20 patches -> scheme over QQ covered with 18 patches + Hom: scheme over QQ covered with 18 patches -> scheme over QQ covered with 16 patches + Hom: scheme over QQ covered with 16 patches -> scheme over QQ covered with 14 patches + Hom: scheme over QQ covered with 14 patches -> scheme over QQ covered with 12 patches + Hom: scheme over QQ covered with 12 patches -> scheme over QQ covered with 10 patches + Hom: scheme over QQ covered with 10 patches -> scheme over QQ covered with 6 patches + + julia> basisNSY1, gramTriv = trivial_lattice(Y1); @@ -88,7 +107,7 @@ julia> basisNSY1 julia> basisNSY1[1] Effective weil divisor Fiber over (2, 1) on elliptic surface with generic fiber -x^3 + y^2 - t^7 + 2*t^6 - t^5 -with coefficients in integer Ring +with coefficients in integer ring given as the formal sum of 1 * sheaf of ideals @@ -100,19 +119,19 @@ julia> @assert gram_matrix(NSY1) == gram_matrix(NS)[I,I] julia> Oscar.horizontal_decomposition(Y1, fibers[2][I])[2] Effective weil divisor on elliptic surface with generic fiber -x^3 + y^2 - t^7 + 2*t^6 - t^5 -with coefficients in integer Ring +with coefficients in integer ring given as the formal sum of + 2 * component E8_3 of fiber over (0, 1) + 2 * component E8_4 of fiber over (0, 1) + 2 * component E8_6 of fiber over (0, 1) + 1 * component E8_0 of fiber over (1, 0) 2 * component E8_7 of fiber over (0, 1) + 1 * component E8_8 of fiber over (0, 1) 2 * section: (0 : 1 : 0) 1 * component A2_0 of fiber over (1, 1) - 1 * component E8_0 of fiber over (1, 0) - 2 * component E8_4 of fiber over (0, 1) - 2 * component E8_3 of fiber over (0, 1) 1 * component E8_2 of fiber over (0, 1) - 2 * component E8_0 of fiber over (0, 1) - 2 * component E8_6 of fiber over (0, 1) 2 * component E8_5 of fiber over (0, 1) - 1 * component E8_8 of fiber over (0, 1) + 2 * component E8_0 of fiber over (0, 1) julia> representative(elliptic_parameter(Y1, fibers[2][I])) (x//z)//(t^3 - t^2) @@ -127,8 +146,6 @@ Elliptic surface over rational field with generic fiber -x^3 + t^3*x^2 - t^3*x + y^2 -and relatively minimal model - scheme over QQ covered with 47 patches julia> E2 = generic_fiber(Y2); tt = gen(kt2); @@ -137,7 +154,7 @@ julia> P2 = E2([tt^3, tt^3]); set_mordell_weil_basis!(Y2, [P2]); julia> U2 = weierstrass_chart_on_minimal_model(Y2); U1 = weierstrass_chart_on_minimal_model(Y1); julia> imgs = phi2.(phi1.(ambient_coordinates(U1))) # k(Y1) -> k(Y2) -3-element Vector{AbstractAlgebra.Generic.Frac{QQMPolyRingElem}}: +3-element Vector{AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}}: (-(x//z)*t + t)//(x//z)^3 ((x//z)*(y//z) - (y//z))//(x//z)^5 1//(x//z) @@ -152,8 +169,8 @@ julia> B = [basis_representation(Y2, D) for D in pullbackDivY1] 20-element Vector{Vector{QQFieldElem}}: [4, 2, 0, 0, 0, 0, 0, 0, 0, -4, -4, -8, -7, -6, -5, -4, -3, -2, -1, 0] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] - [4, 2, -1, -2, -3, -5//2, -2, -3//2, -3//2, -3, -5//2, -5, -9//2, -4, -7//2, -3, -5//2, -2, -3//2, -1] - [0, 0, 1, 2, 3, 5//2, 2, 3//2, 3//2, -2, -3//2, -3, -5//2, -2, -3//2, -1, -1//2, 0, 1//2, 1] + [4, 2, -1, -2, -3, -5//2, -2, -3//2, -3//2, -5//2, -3, -5, -9//2, -4, -7//2, -3, -5//2, -2, -3//2, -1] + [0, 0, 1, 2, 3, 5//2, 2, 3//2, 3//2, -3//2, -2, -3, -5//2, -2, -3//2, -1, -1//2, 0, 1//2, 1] [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] [1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -2, -2, -2, -2, -2, -2, -2, -1, 0] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] @@ -168,7 +185,7 @@ julia> B = [basis_representation(Y2, D) for D in pullbackDivY1] [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - [2, 1, -1, -2, -3, -5//2, -2, -3//2, -3//2, -2, -5//2, -4, -7//2, -3, -5//2, -2, -3//2, -1, -1//2, 0] + [2, 1, -1, -2, -3, -5//2, -2, -3//2, -3//2, -5//2, -2, -4, -7//2, -3, -5//2, -2, -3//2, -1, -1//2, 0] [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] julia> B = matrix(QQ, 20, 20, reduce(vcat, B)); NSY2 = algebraic_lattice(Y2)[3]; @@ -181,8 +198,8 @@ julia> fibers_in_Y2 = [f[I]*B for f in fibers] 6-element Vector{Vector{QQFieldElem}}: [4, 2, 0, 0, 0, 0, 0, 0, 0, -4, -4, -8, -7, -6, -5, -4, -3, -2, -1, 0] [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - [5, 2, -2, -3, -4, -3, -2, -1, -2, -5, -4, -8, -7, -6, -5, -4, -3, -2, -1, 0] - [4, 2, -2, -4, -6, -9//2, -3, -3//2, -7//2, -3, -5//2, -5, -9//2, -4, -7//2, -3, -5//2, -2, -3//2, 0] + [5, 2, -2, -3, -4, -3, -2, -1, -2, -4, -5, -8, -7, -6, -5, -4, -3, -2, -1, 0] + [4, 2, -2, -4, -6, -9//2, -3, -3//2, -7//2, -5//2, -3, -5, -9//2, -4, -7//2, -3, -5//2, -2, -3//2, 0] [2, 1, -1, -2, -3, -2, -1, 0, -2, -1, -1, -2, -2, -2, -2, -2, -2, -1, 0, 1] [2, 1, 0, 0, 0, 0, 0, 0, 0, -2, -2, -4, -4, -4, -4, -3, -2, -1, 0, 1]