From 8d48266cdda3d424cf5113570bda2f2342959730 Mon Sep 17 00:00:00 2001 From: Simon Brandhorst Date: Tue, 23 Jul 2024 09:20:14 +0200 Subject: [PATCH] suppress printing of unstable outputs --- .../vinberg_2.jlcon | 49 ++----------------- 1 file changed, 3 insertions(+), 46 deletions(-) diff --git a/test/book/specialized/brandhorst-zach-fibration-hopping/vinberg_2.jlcon b/test/book/specialized/brandhorst-zach-fibration-hopping/vinberg_2.jlcon index f6ca4fda0078..9555ea4be50a 100644 --- a/test/book/specialized/brandhorst-zach-fibration-hopping/vinberg_2.jlcon +++ b/test/book/specialized/brandhorst-zach-fibration-hopping/vinberg_2.jlcon @@ -116,22 +116,7 @@ julia> b, I = Oscar._is_equal_up_to_permutation_with_permutation(gram_matrix(NS) julia> @assert gram_matrix(NSY1) == gram_matrix(NS)[I,I] -julia> Oscar.horizontal_decomposition(Y1, fibers[2][I])[2] -Effective weil divisor - on elliptic surface with generic fiber -x^3 + y^2 - t^7 + 2*t^6 - t^5 -with coefficients in integer ring -given as the formal sum of - 2 * component E8_3 of fiber over (0, 1) - 2 * component E8_4 of fiber over (0, 1) - 2 * component E8_6 of fiber over (0, 1) - 1 * component E8_0 of fiber over (1, 0) - 2 * component E8_7 of fiber over (0, 1) - 1 * component E8_8 of fiber over (0, 1) - 2 * section: (0 : 1 : 0) - 1 * component A2_0 of fiber over (1, 1) - 1 * component E8_2 of fiber over (0, 1) - 2 * component E8_5 of fiber over (0, 1) - 2 * component E8_0 of fiber over (0, 1) +julia> Oscar.horizontal_decomposition(Y1, fibers[2][I])[2]; julia> representative(elliptic_parameter(Y1, fibers[2][I])) (x//z)//(t^3 - t^2) @@ -165,28 +150,7 @@ julia> set_attribute!(phi_rat, :is_isomorphism=>true); julia> pullbackDivY1 = [pullback(phi_rat, D) for D in basisNSY1]; -julia> B = [basis_representation(Y2, D) for D in pullbackDivY1] -20-element Vector{Vector{QQFieldElem}}: - [4, 2, 0, 0, 0, 0, 0, 0, 0, -4, -4, -8, -7, -6, -5, -4, -3, -2, -1, 0] - [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] - [4, 2, -1, -2, -3, -5//2, -2, -3//2, -3//2, -5//2, -3, -5, -9//2, -4, -7//2, -3, -5//2, -2, -3//2, -1] - [0, 0, 1, 2, 3, 5//2, 2, 3//2, 3//2, -3//2, -2, -3, -5//2, -2, -3//2, -1, -1//2, 0, 1//2, 1] - [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - [1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -2, -2, -2, -2, -2, -2, -2, -1, 0] - [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] - [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0] - [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] - [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] - [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0] - [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] - [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - [2, 1, -1, -2, -3, -5//2, -2, -3//2, -3//2, -5//2, -2, -4, -7//2, -3, -5//2, -2, -3//2, -1, -1//2, 0] - [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +julia> B = [basis_representation(Y2, D) for D in pullbackDivY1]; julia> B = matrix(QQ, 20, 20, reduce(vcat, B)); NSY2 = algebraic_lattice(Y2)[3]; @@ -194,14 +158,7 @@ julia> NSY1inY2 = lattice(ambient_space(NSY2),B); julia> @assert NSY1inY2 == NSY2 && gram_matrix(NSY1inY2) == gram_matrix(NSY1) -julia> fibers_in_Y2 = [f[I]*B for f in fibers] -6-element Vector{Vector{QQFieldElem}}: - [4, 2, 0, 0, 0, 0, 0, 0, 0, -4, -4, -8, -7, -6, -5, -4, -3, -2, -1, 0] - [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - [5, 2, -2, -3, -4, -3, -2, -1, -2, -4, -5, -8, -7, -6, -5, -4, -3, -2, -1, 0] - [4, 2, -2, -4, -6, -9//2, -3, -3//2, -7//2, -5//2, -3, -5, -9//2, -4, -7//2, -3, -5//2, -2, -3//2, 0] - [2, 1, -1, -2, -3, -2, -1, 0, -2, -1, -1, -2, -2, -2, -2, -2, -2, -1, 0, 1] - [2, 1, 0, 0, 0, 0, 0, 0, 0, -2, -2, -4, -4, -4, -4, -3, -2, -1, 0, 1] +julia> fibers_in_Y2 = [f[I]*B for f in fibers]; julia> f3 = fibers[3][I]; representative(elliptic_parameter(Y1, f3)) (x//z)//t^2