-
Notifications
You must be signed in to change notification settings - Fork 25
/
annoy_example.py
64 lines (52 loc) · 2.03 KB
/
annoy_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Copyright 2023 Neal Lathia
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
from annoy import AnnoyIndex
from modelstore.model_store import ModelStore
_NUM_DIMENSIONS = 40
_NUM_TREES = 10
_METRIC = "angular"
_DOMAIN_NAME = "example-annoy-index"
def _train_example_model() -> AnnoyIndex:
# Create an index
print("🤖 Creating an Annoy index...")
model = AnnoyIndex(_NUM_DIMENSIONS, _METRIC)
for i in range(1000):
vector = [random.gauss(0, 1) for z in range(_NUM_DIMENSIONS)]
model.add_item(i, vector)
model.build(_NUM_TREES)
# Show some nearest neighbours
results = model.get_nns_by_item(0, 10)
print(f"🔍 Nearest neighbors = {results}.")
return model
def train_and_upload(modelstore: ModelStore) -> dict:
# Train an Annoy index
model = _train_example_model()
# Upload the model to the model store
print(f'⤴️ Uploading the Annoy model to the "{_DOMAIN_NAME}" domain.')
meta_data = modelstore.upload(
_DOMAIN_NAME,
model=model,
num_dimensions=_NUM_DIMENSIONS,
metric=_METRIC,
num_trees=_NUM_TREES,
)
return meta_data
def load_and_test(modelstore: ModelStore, model_domain: str, model_id: str):
# Load the model back into memory!
print(f'⤵️ Loading the Annoy "{model_domain}" domain model={model_id}')
model = modelstore.load(model_domain, model_id)
# Find some nearest neighbours
results = model.get_nns_by_item(0, 10)
print(f"🔍 Nearest neighbors = {results}.")