Skip to content

Commit

Permalink
Add connector blueprint for Azure OpenAI Embedding and Chat model (#1874
Browse files Browse the repository at this point in the history
) (#2062)

* add: connector blueprint for Azure OpenAI embedding

* add: connector blueprint for azure openai chat model

* minor: fix typo

(cherry picked from commit 671457b)

Co-authored-by: OysterMax <sma@esri.com>
  • Loading branch information
opensearch-trigger-bot[bot] and shengbo-ma authored Feb 9, 2024
1 parent 731aa72 commit d880761
Show file tree
Hide file tree
Showing 2 changed files with 354 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,208 @@
# Azure OpenAI connector Blueprint for Chat Completion:

## 1. Add Azure OpenAI Endpoint to Trusted URLs:

```json
PUT /_cluster/settings
{
"persistent": {
"plugins.ml_commons.trusted_connector_endpoints_regex": [
"^https://.*\\.openai\\.azure\\.com/.*$"
]
}
}
```

## 2. Create Connector for Azure OpenAI Chat Model:

Refer to [Azure OpenAI Service REST API reference - Chat Completion](https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions).

If you are using self-managed Opensearch, you should supply OpenAI API key:


```json
POST /_plugins/_ml/connectors/_create
{
"name": "<YOUR CONNECTOR NAME>",
"description": "<YOUR CONNECTOR DESCRIPTION>",
"version": "<YOUR CONNECTOR VERSION>",
"protocol": "http",
"parameters": {
"endpoint": "<YOUR RESOURCE NAME>.openai.azure.com/",
"deploy-name": "<YOUR DEPLOYMENT NAME>",
"model": "gpt-4",
"api-version": "<YOUR API VERSION>",
"temperature": 0.7
},
"credential": {
"openAI_key": "<YOUR API KEY>"
},
"actions": [
{
"action_type": "predict",
"method": "POST",
"url": "https://${parameters.endpoint}/openai/deployments/${parameters.deploy-name}/chat/completions?api-version=${parameters.api-version}",
"headers": {
"api-key": "${credential.openAI_key}"
},
"request_body": "{ \"messages\": ${parameters.messages}, \"temperature\": ${parameters.temperature} }"
}
]
}
```

### Sample response:
```json
{
"connector_id": "EapnEY0BpYxvPx3Hxpmp"
}
```

## 3. Create model group:

```json
POST /_plugins/_ml/model_groups/_register
{
"name": "remote_model_group",
"description": "This is an example description"
}
```

### Sample response
```json
{
"model_group_id": "YyvcbYsBjU568JRbdHqv",
"status": "CREATED"
}
```

## 4. Register model to model group & deploy model:

```json
POST /_plugins/_ml/models/_register
{
"name": "azure-openAI-gpt-4",
"function_name": "remote",
"model_group_id": "YyvcbYsBjU568JRbdHqv",
"description": "Azure OpenAI GPT 4",
"connector_id": "EapnEY0BpYxvPx3Hxpmp"
}
```

### Sample response
```json
{
"task_id": "E6ppEY0BpYxvPx3HZZkL",
"status": "CREATED",
"model_id": "FKppEY0BpYxvPx3HZZk0"
}
```

Check if the task is completed
```
GET /_plugins/_ml/tasks/E6ppEY0BpYxvPx3HZZkL
```

When model registration is completed, deploy it
```
POST /_plugins/_ml/models/FKppEY0BpYxvPx3HZZk0/_deploy
```

## 5. Test model
```json
POST /_plugins/_ml/models/FKppEY0BpYxvPx3HZZk0/_predict
{
"parameters": {
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "Hello!"
}
]
}
}
```

### Sample response

```json
{
"inference_results": [
{
"output": [
{
"name": "response",
"dataAsMap": {
"id": "chatcmpl-8hZDlKJIaFLrC2sGTI2EYBiHQUhdI",
"object": "chat.completion",
"created": 1705394185,
"model": "gpt-35-turbo",
"prompt_filter_results": [
{
"prompt_index": 0,
"content_filter_results": {
"hate": {
"filtered": false,
"severity": "safe"
},
"self_harm": {
"filtered": false,
"severity": "safe"
},
"sexual": {
"filtered": false,
"severity": "safe"
},
"violence": {
"filtered": false,
"severity": "safe"
}
}
}
],
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"role": "assistant",
"content": "Hello! How can I assist you today?"
},
"content_filter_results": {
"hate": {
"filtered": false,
"severity": "safe"
},
"self_harm": {
"filtered": false,
"severity": "safe"
},
"sexual": {
"filtered": false,
"severity": "safe"
},
"violence": {
"filtered": false,
"severity": "safe"
}
}
}
],
"usage": {
"prompt_tokens": 19,
"completion_tokens": 9,
"total_tokens": 28
}
}
}
],
"status_code": 200
}
]
}
```

Original file line number Diff line number Diff line change
@@ -0,0 +1,146 @@
# Azure OpenAI connector blueprint example for embedding model

## 1. Add Azure OpenAI endpoint to trusted URLs:

```json
PUT /_cluster/settings
{
"persistent": {
"plugins.ml_commons.trusted_connector_endpoints_regex": [
"^https://.*\\.openai\\.azure\\.com/.*$"
]
}
}
```

## 2. Create connector for Azure OpenAI embedding model:

Refer to [Azure OpenAI Service REST API reference - Embedding](https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#embeddings).

If you are using self-managed Opensearch, you should supply OpenAI API key:


```json
POST /_plugins/_ml/connectors/_create
{
"name": "<YOUR CONNECTOR NAME>",
"description": "<YOUR CONNECTOR DESCRIPTION>",
"version": "<YOUR CONNECTOR VERSION>",
"protocol": "http",
"parameters": {
"endpoint": "<YOUR RESOURCE NAME>.openai.azure.com/",
"deploy-name": "<YOUR DEPLOYMENT NAME>",
"model": "text-embedding-ada-002",
"api-version": "<YOUR API VERSION>"
},
"credential": {
"openAI_key": "<YOUR API KEY>"
},
"actions": [
{
"action_type": "predict",
"method": "POST",
"url": "https://${parameters.endpoint}/openai/deployments/${parameters.deploy-name}/embeddings?api-version=${parameters.api-version}",
"headers": {
"api-key": "${credential.openAI_key}"
},
"request_body": "{ \"input\": ${parameters.input}}",
"pre_process_function": "connector.pre_process.openai.embedding",
"post_process_function": "connector.post_process.openai.embedding"
}
]
}
```

Sample response:
```json
{
"connector_id": "OyB0josB2yd36FqHy3lO"
}
```

## 3. Create model group:

```json
POST /_plugins/_ml/model_groups/_register
{
"name": "remote_model_group",
"description": "This is an example description"
}
```

Sample response:
```json
{
"model_group_id": "TWR0josByE8GuSOJ629m",
"status": "CREATED"
}
```

## 4. Register model to model group & deploy model:

```json
POST /_plugins/_ml/models/_register
{
"name": "OpenAI embedding model",
"function_name": "remote",
"model_group_id": "TWR0josByE8GuSOJ629m",
"description": "test model",
"connector_id": "OyB0josB2yd36FqHy3lO"
}
```


Sample response:
```json
{
"task_id": "PCB1josB2yd36FqHAXk9",
"status": "CREATED"
}
```
Get model id from task
```json
GET /_plugins/_ml/tasks/PCB1josB2yd36FqHAXk9
```
Deploy model, in this demo the model id is `PSB1josB2yd36FqHAnl1`
```json
POST /_plugins/_ml/models/PSB1josB2yd36FqHAnl1/_deploy
```

## 5. Test model inference

```json
POST /_plugins/_ml/models/PSB1josB2yd36FqHAnl1/_predict
{
"parameters": {
"input": [ "What is the meaning of life?" ]
}
}
```

Response:
```json
{
"inference_results": [
{
"output": [
{
"name": "sentence_embedding",
"data_type": "FLOAT32",
"shape": [
1536
],
"data": [
-0.0043460787,
-0.029653417,
-0.008173223,
...
]
}
],
"status_code": 200
}
]
}
```

0 comments on commit d880761

Please sign in to comment.