🤗 HF-150M • 🤗 HF-355M • 🤗 HF-1B
Official implementation of Hierarchically Gated Recurrent Neural Network for Sequence Modeling. This repo does not contain specific codes, but only scripts and some instructions on how to reproduce the results of the paper. The overall directory is as follows:
The overall network architecture is as follows:
The input is
Then we compute layer dependent lower bound as follows:
where HH is the number of layers and
We use this lower bound to compute forget gate:
The full recurrence(HRU) is as follows:
Combine
Our experiment uses two conda environments, where Autoregressive language modeling, needs to configure the environment according to the Env1 part, and LRA needs to configure the environment according to the Env2 part.
First build the conda environment based on the yaml file:
conda env create --file env1.yaml
If you meet an error when installing torch, just remove torch and torchvision in the yaml file, rerun the above command, and then run the below commands:
conda activate hgrn
wget https://download.pytorch.org/whl/cu111/torch-1.8.1%2Bcu111-cp36-cp36m-linux_x86_64.whl
pip install torch-1.8.1+cu111-cp36-cp36m-linux_x86_64.whl
pip install -r requirements_hgrn.txt
Then, install hgru-pytorch
:
conda activate hgrn
cd hgru-pytorch
pip install .
Finally, install our version of fairseq:
cd fairseq
pip install --editable ./
Build the conda environment based on the yaml file:
conda env create --file env2.yaml
If you encounter difficulties in setting up the environment, you can install the conda environment first, and then use the following command to install the pip packages:
pip install torch==1.10.0+cu111 torchvision==0.11.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements_lra.txt
Finally, install hgru-pytorch
:
conda activate lra
cd hgru-pytorch
pip install .
First download the WikiText-103 dataset:
wget https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-raw-v1.zip
unzip wikitext-103-raw-v1.zip
Next, encode it with the GPT-2 BPE:
mkdir -p gpt2_bpe
wget -O gpt2_bpe/encoder.json https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json
wget -O gpt2_bpe/vocab.bpe https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe
for SPLIT in train valid test; do \
python -m examples.roberta.multiprocessing_bpe_encoder \
--encoder-json gpt2_bpe/encoder.json \
--vocab-bpe gpt2_bpe/vocab.bpe \
--inputs wikitext-103-raw/wiki.${SPLIT}.raw \
--outputs wikitext-103-raw/wiki.${SPLIT}.bpe \
--keep-empty \
--workers 60; \
done
Finally, preprocess/binarize the data using the GPT-2 fairseq dictionary:
wget -O gpt2_bpe/dict.txt https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt
fairseq-preprocess \
--only-source \
--srcdict gpt2_bpe/dict.txt \
--trainpref wikitext-103-raw/wiki.train.bpe \
--validpref wikitext-103-raw/wiki.valid.bpe \
--testpref wikitext-103-raw/wiki.test.bpe \
--destdir data-bin/wikitext-103 \
--workers 60
This step comes from fairseq.
Use the following command to train language model:
bash script_alm.sh
You should change data_dir to preprocessed data.
First clone the following codebase:
git clone https://github.com/OpenNLPLab/im.git
Then change the code_dir
and data_dir
in script_im.sh
, finally run the following script
bash script_im.sh
Download the codebase:
git clone https://github.com/OpenNLPLab/lra.git
Download the data:
wget https://storage.googleapis.com/long-range-arena/lra_release.gz
mv lra_release.gz lra_release.tar.gz
tar -xvf lra_release.tar.gz
Use the following script to run the experiments, you should change PREFIX
to your lra path, change tasks
to a specific task:
python script_lra.py
See hgru-pytorch.