-
Notifications
You must be signed in to change notification settings - Fork 22
/
scheme-switching.py
1256 lines (969 loc) · 42.3 KB
/
scheme-switching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from openfhe import *
from math import *
def main():
SwitchCKKSToFHEW()
SwitchFHEWtoCKKS()
FloorViaSchemeSwitching()
FuncViaSchemeSwitching()
PolyViaSchemeSwitching()
ComparisonViaSchemeSwitching()
ArgminViaSchemeSwitching()
ArgminViaSchemeSwitchingAlt()
ArgminViaSchemeSwitchingUnit()
ArgminViaSchemeSwitchingAltUnit()
def SwitchCKKSToFHEW():
# Example of switching a packed ciphertext from CKKS to multiple FHEW ciphertexts.
print("\n-----SwitchCKKSToFHEW-----\n")
# Step 1: Setup CryptoContext for CKKS
# Specify main parameters
multDepth = 3
firstModSize = 60
scaleModSize = 50
ringDim = 4096
sl = HEStd_NotSet
slBin = TOY
logQ_ccLWE = 25
# slots = ringDim / 2 # Uncomment for fully-packed
slots = 16 # sparsely-packed
batchSize = slots
parameters = CCParamsCKKSRNS()
parameters.SetMultiplicativeDepth(multDepth)
parameters.SetFirstModSize(firstModSize)
parameters.SetScalingModSize(scaleModSize)
parameters.SetScalingTechnique(FIXEDMANUAL)
parameters.SetSecurityLevel(sl)
parameters.SetRingDim(ringDim)
parameters.SetBatchSize(batchSize)
cc = GenCryptoContext(parameters)
# Enable the features that you wish to use
cc.Enable(PKE)
cc.Enable(KEYSWITCH)
cc.Enable(LEVELEDSHE)
cc.Enable(SCHEMESWITCH)
print(f"CKKS scheme is using ring dimension {cc.GetRingDimension()},")
print(f"number of slots {slots}, and supports a multiplicative depth of {multDepth}\n")
# Generate encryption keys
keys = cc.KeyGen()
# Step 2: Prepare the FHEW cryptocontext and keys for FHEW and scheme switching
# FHEWparams = cc.EvalCKKStoFHEWSetup(sl, slBin, False, logQ_ccLWE, False, slots)
params = SchSwchParams()
params.SetSecurityLevelCKKS(sl)
params.SetSecurityLevelFHEW(slBin)
params.SetCtxtModSizeFHEWLargePrec(logQ_ccLWE)
params.SetNumSlotsCKKS(slots)
privateKeyFHEW = cc.EvalCKKStoFHEWSetup(params)
ccLWE = cc.GetBinCCForSchemeSwitch()
# ccLWE = FHEWparams[0]
# privateKeyFHEW = FHEWparams[1]
cc.EvalCKKStoFHEWKeyGen(keys, privateKeyFHEW)
print(f"FHEW scheme is using a lattice parameter {ccLWE.Getn()},")
print(f"logQ {logQ_ccLWE},")
print(f"and modulus q {ccLWE.Getq()}\n")
# Compute the scaling factor to decrypt correctly in FHEW; the LWE mod switch is performed on the ciphertext at the last level
pLWE1 = ccLWE.GetMaxPlaintextSpace() # Small precision
modulus_LWE = 1 << logQ_ccLWE
beta = ccLWE.GetBeta()
pLWE2 = modulus_LWE / (2*beta) # Large precision
scale1 = 1 / pLWE1
scale2 = 1 / pLWE2
# Perform the precomputation for switching
cc.EvalCKKStoFHEWPrecompute(scale1)
# Step 3: Encoding and encryption of inputs
# Inputs
x1 = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
x2 = [0.0, 271.1, 30000.0, pLWE2-2]
encodedLength1 = len(x1)
encodedLength2 = len(x2)
# Encoding as plaintexts
ptxt1 = cc.MakeCKKSPackedPlaintext(x1, 1, 0)
ptxt2 = cc.MakeCKKSPackedPlaintext(x2, 1, 0)
# Encrypt the encoded vectors
c1 = cc.Encrypt(keys.publicKey, ptxt1)
c2 = cc.Encrypt(keys.publicKey, ptxt2)
# Step 4: Scheme Switching from CKKS to FHEW
cTemp = cc.EvalCKKStoFHEW(c1, encodedLength1)
print(f"\n---Decrypting switched ciphertext with small precision (plaintext modulus {pLWE1}) ---\n")
x1Int = [round(x) % pLWE1 for x in x1]
ptxt1.SetLength(encodedLength1)
print(f"Input x1: {ptxt1.GetRealPackedValue()}; which rounds to {x1Int}")
print("FHEW Decryption")
for i in range(len(cTemp)):
result = ccLWE.Decrypt(privateKeyFHEW, cTemp[i], pLWE1)
print(result, end=" ")
print("\n")
# B: Second scheme switching case
# Perform the precomputation for switching
cc.EvalCKKStoFHEWPrecompute(scale2)
# Transform the ciphertext from CKKS to FHEW (only for the number of inputs given)
cTemp2 = cc.EvalCKKStoFHEW(c2, encodedLength2)
print(f"\n---Decrypting switched ciphertext with large precision (plaintext modulus {pLWE2}) ---\n")
ptxt2.SetLength(encodedLength2)
print(f"Input x2: {ptxt2.GetRealPackedValue()}")
print("FHEW Decryption")
for i in range(len(cTemp2)):
result = ccLWE.Decrypt(privateKeyFHEW, cTemp2[i], int(pLWE2))
print(result, end=" ")
print("\n")
# C: Decompose the FHEW ciphertexts in smaller digits
print(f"Decomposed values for digit size of {pLWE1}:")
# Generate the bootstrapping keys (refresh and switching keys)
ccLWE.BTKeyGen(privateKeyFHEW)
for j in range(len(cTemp2)):
# Decompose the large ciphertext into small ciphertexts that fit in q
decomp = ccLWE.EvalDecomp(cTemp2[j])
# Decryption
p = ccLWE.GetMaxPlaintextSpace()
for i in range(len(decomp)):
ct = decomp[i]
if i == len(decomp) - 1:
p = int(pLWE2 / (pLWE1 ** floor(log(pLWE2)/log(pLWE1))))
# The last digit should be up to P / p^floor(log_p(P))
resultDecomp = ccLWE.Decrypt(privateKeyFHEW, ct, p)
print(f"( {resultDecomp} * {pLWE1} ^ {i} )")
if i != len(decomp) - 1:
print("+", end=" ")
print("\n")
def SwitchFHEWtoCKKS():
print("\n-----SwitchFHEWtoCKKS-----\n")
print("Output precision is only wrt the operations in CKKS after switching back.\n")
# Step 1: Setup CryptoContext for CKKS to be switched into
# A. Specify main parameters
scTech = FIXEDAUTO
multDepth = 3 + 9 + 1
# for r = 3 in FHEWtoCKKS, Chebyshev max depth allowed is 9, 1 more level for postscaling
if scTech == FLEXIBLEAUTOEXT:
multDepth += 1
scaleModSize = 50
ringDim = 8192
sl = HEStd_NotSet # If this is not HEStd_NotSet, ensure ringDim is compatible
logQ_ccLWE = 28
# slots = ringDim/2; # Uncomment for fully-packed
slots = 16 # sparsely-packed
batchSize = slots
parameters = CCParamsCKKSRNS()
parameters.SetMultiplicativeDepth(multDepth)
parameters.SetScalingModSize(scaleModSize)
parameters.SetScalingTechnique(scTech)
parameters.SetSecurityLevel(sl)
parameters.SetRingDim(ringDim)
parameters.SetBatchSize(batchSize)
cc = GenCryptoContext(parameters)
# Enable the features that you wish to use
cc.Enable(PKE)
cc.Enable(KEYSWITCH)
cc.Enable(LEVELEDSHE)
cc.Enable(ADVANCEDSHE)
cc.Enable(SCHEMESWITCH)
print(f"CKKS scheme is using ring dimension {cc.GetRingDimension()},\n number of slots {slots}, and suports a multiplicative depth of {multDepth}\n")
# Generate encryption keys
keys = cc.KeyGen()
# Step 2: Prepare the FHEW cryptocontext and keys for FHEW and scheme switching
ccLWE = BinFHEContext()
ccLWE.GenerateBinFHEContext(TOY, False, logQ_ccLWE, 0, GINX, False)
# LWE private key
lwesk = ccLWE.KeyGen()
print(f"FHEW scheme is using lattice parameter {ccLWE.Getn()},\n logQ {logQ_ccLWE},\n and modulus q {ccLWE.Getq()}\n")
# Step 3. Precompute the necessary keys and information for switching from FHEW to CKKS
cc.EvalFHEWtoCKKSSetup(ccLWE, slots, logQ_ccLWE)
cc.EvalFHEWtoCKKSKeyGen(keys, lwesk)
# Step 4: Encoding and encryption of inputs
# For correct CKKS decryption, the messages have to be much smaller than the FHEW plaintext modulus!
pLWE1 = ccLWE.GetMaxPlaintextSpace() # Small precision
pLWE2 = 256 # Medium precision
modulus_LWE = 1 << logQ_ccLWE
beta = ccLWE.GetBeta()
pLWE3 = int(modulus_LWE / (2 * beta)) # Large precision
x1 = [1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0]
x2 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
if len(x1) < slots:
zeros = [0] * (slots - len(x1))
x1.extend(zeros)
x2.extend(zeros)
# Encrypt
# Encrypted under small plaintext modulus p = 4 and ciphertext modulus:
ctxtsLWE1 = [ccLWE.Encrypt(lwesk, x1[i]) for i in range(slots)]
# Encrypted under larger plaintext modulus p = 16 but small ciphertext modulus:
ctxtsLWE2 = [ccLWE.Encrypt(lwesk, x1[i], FRESH, pLWE1) for i in range(slots)]
# Encrypted under larger plaintext modulus and large ciphertext modulus:
ctxtsLWE3 = [ccLWE.Encrypt(lwesk, x2[i], FRESH, pLWE2, modulus_LWE) for i in range(slots)]
# Encrypted under large plaintext modulus and large ciphertext modulus:
ctxtsLWE4 = [ccLWE.Encrypt(lwesk, x2[i], FRESH, pLWE3, modulus_LWE) for i in range(slots)]
# Step 5. Perform the scheme switching
cTemp = cc.EvalFHEWtoCKKS(ctxtsLWE1, slots, slots)
print(f"\n---Input x1: {x1} encrypted under p = 4 and Q = {ctxtsLWE1[0].GetModulus()} ---")
# Step 6. Decrypt
plaintextDec = cc.Decrypt(keys.secretKey, cTemp)
plaintextDec.SetLength(slots)
print(f"Switched CKKS decryption 1: {plaintextDec}")
# Step 5'. Perform the scheme switching
cTemp = cc.EvalFHEWtoCKKS(ctxtsLWE2, slots, slots, pLWE1, 0, pLWE1)
print(f"\n---Input x1: {x1} encrypted under p = {pLWE1} and Q = {ctxtsLWE2[0].GetModulus()} ---")
# Step 6'. Decrypt
plaintextDec = cc.Decrypt(keys.secretKey, cTemp)
plaintextDec.SetLength(slots)
print(f"Switched CKKS decryption 2: {plaintextDec}")
# Step 5''. Perform the scheme switching
cTemp = cc.EvalFHEWtoCKKS(ctxtsLWE3, slots, slots, pLWE2, 0, pLWE2)
print(f"\n---Input x2: {x2} encrypted under p = {pLWE2} and Q = {ctxtsLWE3[0].GetModulus()} ---")
# Step 6''. Decrypt
plaintextDec = cc.Decrypt(keys.secretKey, cTemp)
plaintextDec.SetLength(slots)
print(f"Switched CKKS decryption 3: {plaintextDec}")
# Step 5'''. Perform the scheme switching
cTemp2 = cc.EvalFHEWtoCKKS(ctxtsLWE4, slots, slots, pLWE3, 0, pLWE3)
print(f"\n---Input x2: {x2} encrypted under p = {pLWE3} and Q = {ctxtsLWE4[0].GetModulus()} ---")
# Step 6'''. Decrypt
plaintextDec = cc.Decrypt(keys.secretKey, cTemp2)
plaintextDec.SetLength(slots)
print(f"Switched CKKS decryption 4: {plaintextDec}")
def FloorViaSchemeSwitching():
print("\n-----FloorViaSchemeSwitching-----\n")
print("Output precision is only wrt the operations in CKKS after switching back.\n")
# Step 1: Setup CryptoContext for CKKS
scTech = FIXEDAUTO
multDepth = 3 + 9 + 1 # for r = 3 in FHEWtoCKKS, Chebyshev max depth allowed is 9, 1 more level for postscaling
if scTech == FLEXIBLEAUTOEXT:
multDepth += 1
scaleModSize = 50
ringDim = 8192
sl = HEStd_NotSet
slBin = TOY
logQ_ccLWE = 23
slots = 16 # sparsely-packed
batchSize = slots
parameters = CCParamsCKKSRNS()
parameters.SetMultiplicativeDepth(multDepth)
parameters.SetScalingModSize(scaleModSize)
parameters.SetScalingTechnique(scTech)
parameters.SetSecurityLevel(sl)
parameters.SetRingDim(ringDim)
parameters.SetBatchSize(batchSize)
cc = GenCryptoContext(parameters)
# Enable the features that you wish to use
cc.Enable(PKE)
cc.Enable(KEYSWITCH)
cc.Enable(LEVELEDSHE)
cc.Enable(ADVANCEDSHE)
cc.Enable(SCHEMESWITCH)
print(f"CKKS scheme is using ring dimension {cc.GetRingDimension()},\n number of slots {slots}, and suports a multiplicative depth of {multDepth}\n")
# Generate encryption keys.
keys = cc.KeyGen()
# Step 2: Prepare the FHEW cryptocontext and keys for FHEW and scheme switching
params = SchSwchParams()
params.SetSecurityLevelCKKS(sl)
params.SetSecurityLevelFHEW(slBin)
params.SetCtxtModSizeFHEWLargePrec(logQ_ccLWE)
params.SetNumSlotsCKKS(slots)
params.SetNumValues(slots)
privateKeyFHEW = cc.EvalSchemeSwitchingSetup(params)
ccLWE = cc.GetBinCCForSchemeSwitch()
cc.EvalSchemeSwitchingKeyGen(keys, privateKeyFHEW)
# Generate bootstrapping key for EvalFloor
ccLWE.BTKeyGen(privateKeyFHEW)
print(f"FHEW scheme is using lattice parameter {ccLWE.Getn()},\n logQ {logQ_ccLWE},\n and modulus q {ccLWE.Getq()}\n")
# Set the scaling factor to be able to decrypt; the LWE mod switch is performed on the ciphertext at the last level
modulus_CKKS_from = cc.GetModulusCKKS()
modulus_LWE = 1 << logQ_ccLWE
beta = ccLWE.GetBeta()
pLWE = int(modulus_LWE / (2 * beta)) # Large precision
scaleCF = 1.0 / pLWE
cc.EvalCKKStoFHEWPrecompute(scaleCF)
# Step 3: Encoding and encryption of inputs
# Inputs
x1 = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0]
# Encoding as plaintexts
ptxt1 = cc.MakeCKKSPackedPlaintext(x1, 1, 0, None)#, None)
# Encrypt the encoded vectors
c1 = cc.Encrypt(keys.publicKey, ptxt1)
# Step 4: Scheme switching from CKKS to FHEW
cTemp = cc.EvalCKKStoFHEW(c1, slots)
# Step 5: Evaluate the floor function
bits = 2
cFloor = [ccLWE.EvalFloor(cTemp[i], bits) for i in range(len(cTemp))]
print(f"Input x1: {ptxt1.GetRealPackedValue()}")
print(f"Expected result for EvalFloor with {bits} bits: ", end="")
for i in range(slots):
print(int(ptxt1.GetRealPackedValue()[i]) >> bits, end=" ")
print(f"\nFHEW decryption p = {pLWE}/(1 << bits) = {pLWE // (1 << bits)}: ", end="")
for i in range(len(cFloor)):
pFloor = ccLWE.Decrypt(privateKeyFHEW, cFloor[i], pLWE // (1 << bits))
print(pFloor, end=" ")
print("\n")
# Step 6: Scheme switching from FHEW to CKKS
cTemp2 = cc.EvalFHEWtoCKKS(cFloor, slots, slots, pLWE // (1 << bits), 0, pLWE / (1 << bits))
plaintextDec2 = cc.Decrypt(keys.secretKey, cTemp2)
plaintextDec2.SetLength(slots)
print(f"Switched floor decryption modulus_LWE mod {pLWE // (1 << bits)}: {plaintextDec2}")
def FuncViaSchemeSwitching():
print("\n-----FuncViaSchemeSwitching-----\n")
print("Output precision is only wrt the operations in CKKS after switching back.\n")
# Step 1: Setup CryptoContext for CKKS
multDepth = 9 + 3 + 2 # 1 for CKKS to FHEW, 14 for FHEW to CKKS
scaleModSize = 50
ringDim = 2048
sl = HEStd_NotSet
slBin = TOY
logQ_ccLWE = 25
arbFunc = True
slots = 8 # sparsely-packed
batchSize = slots
parameters = CCParamsCKKSRNS()
parameters.SetMultiplicativeDepth(multDepth)
parameters.SetScalingModSize(scaleModSize)
parameters.SetScalingTechnique(FIXEDMANUAL)
parameters.SetSecurityLevel(sl)
parameters.SetRingDim(ringDim)
parameters.SetBatchSize(batchSize)
cc = GenCryptoContext(parameters)
# Enable the features that you wish to use
cc.Enable(PKE)
cc.Enable(KEYSWITCH)
cc.Enable(LEVELEDSHE)
cc.Enable(ADVANCEDSHE)
cc.Enable(SCHEMESWITCH)
print(f"CKKS scheme is using ring dimension {cc.GetRingDimension()},\n and number of slots {slots}\n")
# Generate encryption keys.
keys = cc.KeyGen()
# Step 2: Prepare the FHEW cryptocontext and keys for FHEW and scheme switching
params = SchSwchParams()
params.SetSecurityLevelCKKS(sl)
params.SetSecurityLevelFHEW(slBin)
params.SetArbitraryFunctionEvaluation(True)
params.SetCtxtModSizeFHEWLargePrec(logQ_ccLWE)
params.SetNumSlotsCKKS(slots)
params.SetNumValues(slots)
privateKeyFHEW = cc.EvalSchemeSwitchingSetup(params)
ccLWE = cc.GetBinCCForSchemeSwitch()
cc.EvalSchemeSwitchingKeyGen(keys, privateKeyFHEW)
# Generate the bootstrapping keys for EvalFunc in FHEW
ccLWE.BTKeyGen(privateKeyFHEW)
print(f"FHEW scheme is using lattice parameter {ccLWE.Getn()},\n logQ {logQ_ccLWE},\n and modulus q {ccLWE.Getq()}\n")
# Set the scaling factor to be able to decrypt; the LWE mod switch is performed on the ciphertext at the last level
pLWE = ccLWE.GetMaxPlaintextSpace() # Small precision because GenerateLUTviaFunction needs p < q
scaleCF = 1.0 / pLWE
cc.EvalCKKStoFHEWPrecompute(scaleCF)
# Step 3: Initialize the function
# Initialize Function f(x) = x^3 + 2x + 1 % p
def fp(m, p1):
if m < p1:
return (m * m * m + 2 * m * m + 1) % p1
else:
return ((m - p1 / 2) * (m - p1 / 2) * (m - p1 / 2) + 2 * (m - p1 / 2) * (m - p1 / 2) + 1) % p1
# Generate LUT from function f(x)
lut = ccLWE.GenerateLUTviaFunction(fp, pLWE)
# Step 4: Encoding and encryption of inputs
# Inputs
x1 = [0.0, 0.3, 2.0, 4.0, 5.0, 6.0, 7.0, 8.0]
# Encoding as plaintexts
ptxt1 = cc.MakeCKKSPackedPlaintext(x1, 1, 0, None)
# Encrypt the encoded vectors
c1 = cc.Encrypt(keys.publicKey, ptxt1)
# Step 5: Scheme switching from CKKS to FHEW
cTemp = cc.EvalCKKStoFHEW(c1, slots)
print(f"Input x1: {ptxt1.GetRealPackedValue()}")
print("FHEW decryption: ", end="")
for i in range(len(cTemp)):
result = ccLWE.Decrypt(privateKeyFHEW, cTemp[i], pLWE)
print(result, end=" ")
# Step 6: Evaluate the function
cFunc = [ccLWE.EvalFunc(cTemp[i], lut) for i in range(len(cTemp))]
print("\nExpected result x^3 + 2*x + 1 mod p: ", end="")
for i in range(slots):
print(fp(int(x1[i]) % pLWE, pLWE), end=" ")
print(f"\nFHEW decryption mod {pLWE}: ", end="")
for i in range(len(cFunc)):
pFunc = ccLWE.Decrypt(privateKeyFHEW, cFunc[i], pLWE)
print(pFunc, end=" ")
print("\n")
# Step 7: Scheme switching from FHEW to CKKS
cTemp2 = cc.EvalFHEWtoCKKS(cFunc, slots, slots, pLWE, 0, pLWE)
plaintextDec2 = cc.Decrypt(keys.secretKey, cTemp2)
plaintextDec2.SetLength(slots)
print(f"\nSwitched decryption modulus_LWE mod {pLWE}\nworks only for messages << p: {plaintextDec2}")
# Transform through arcsine
cTemp2 = cc.EvalFHEWtoCKKS(cFunc, slots, slots, 4, 0, 2)
plaintextDec2 = cc.Decrypt(keys.secretKey, cTemp2)
plaintextDec2.SetLength(slots)
print("Arcsin(switched result) * p/2pi gives the correct result if messages are < p/4: ", end="")
for i in range(slots):
x = max(min(plaintextDec2.GetRealPackedValue()[i], 1.0), -1.0)
print(asin(x) * pLWE / (2 * pi), end=" ")
print()
def PolyViaSchemeSwitching():
print("\n-----PolyViaSchemeSwitching-----\n")
# Step 1: Setup CryptoContext for CKKS to be switched into
# A. Specify main parameters
scTech = FIXEDAUTO
multDepth = 3 + 9 + 1 + 2 # for r = 3 in FHEWtoCKKS, Chebyshev max depth allowed is 9, 1 more level for postscaling, 3 levels for functionality
if scTech == FLEXIBLEAUTOEXT:
multDepth += 1
scaleModSize = 50
ringDim = 2048
sl = HEStd_NotSet
slBin = TOY
logQ_ccLWE = 25
slots = 16 # sparsely-packed
batchSize = slots
# Create encryption parameters
parameters = CCParamsCKKSRNS()
parameters.SetMultiplicativeDepth(multDepth)
parameters.SetScalingModSize(scaleModSize)
parameters.SetScalingTechnique(scTech)
parameters.SetSecurityLevel(sl)
parameters.SetRingDim(ringDim)
parameters.SetBatchSize(batchSize)
cc = GenCryptoContext(parameters)
# Enable the features that you wish to use
cc.Enable(PKE)
cc.Enable(KEYSWITCH)
cc.Enable(LEVELEDSHE)
cc.Enable(ADVANCEDSHE)
cc.Enable(SCHEMESWITCH)
print(f"CKKS scheme is using ring dimension {cc.GetRingDimension()},\n number of slots {slots}, and suports a multiplicative depth of {multDepth}\n")
# Generate encryption keys
keys = cc.KeyGen()
# Step 2: Prepare the FHEW cryptocontext and keys for FHEW and scheme switching
params = SchSwchParams()
params.SetSecurityLevelCKKS(sl)
params.SetSecurityLevelFHEW(slBin)
params.SetCtxtModSizeFHEWLargePrec(logQ_ccLWE)
params.SetNumSlotsCKKS(slots)
params.SetNumValues(slots)
privateKeyFHEW = cc.EvalSchemeSwitchingSetup(params)
ccLWE = cc.GetBinCCForSchemeSwitch()
cc.EvalSchemeSwitchingKeyGen(keys, privateKeyFHEW)
print(f"FHEW scheme is using lattice parameter {ccLWE.Getn()},\n logQ {logQ_ccLWE},\n and modulus q {ccLWE.Getq()}\n")
pLWE1 = ccLWE.GetMaxPlaintextSpace() # Small precision
modulus_LWE = 1 << logQ_ccLWE
beta = ccLWE.GetBeta()
pLWE2 = int(modulus_LWE / (2 * beta)) # Large precision
scale1 = 1.0 / pLWE1
scale2 = 1.0 / pLWE2
# Generate keys for the CKKS intermediate computation
cc.EvalMultKeyGen(keys.secretKey)
cc.EvalRotateKeyGen(keys.secretKey, [1,2])
# Step 4: Encoding and encryption of inputs
# For correct CKKS decryption, the messages have to be much smaller than the FHEW plaintext modulus!
# Inputs
x1 = [1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0]
x2 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
x1Rot = RotateInt(x1,1)
x1Rot = [x1Rot[i] + x1[i] for i in range(len(x1))]
x1Int = [int(round(0.25 * elem * elem) % pLWE1) for elem in x1Rot]
x2Rot = RotateInt(x2,2)
x2Rot = [x2Rot[i] + x2[i] for i in range(len(x2))]
x2Int = [int(round(0.25 * elem * elem) % pLWE2) for elem in x2Rot]
# Encrypt
# encrypted under small plantext modulus p = 4 and ciphertext modulus
ctxtsLWE1 = [ccLWE.Encrypt(privateKeyFHEW, x1[i]) for i in range(slots)]
# encrypted under large plaintext modulus and large ciphertext modulus
ctxtsLWE2 = [ccLWE.Encrypt(privateKeyFHEW, x2[i], FRESH, pLWE2, modulus_LWE) for i in range(slots)]
# Step 5. Perform the scheme switching
cTemp = cc.EvalFHEWtoCKKS(ctxtsLWE1, slots, slots)
print(f"\n---Input x1: {x1} encrypted under p = 4 and Q = {ctxtsLWE1[0].GetModulus()} ---\n")
print(f"round( 0.5 * (x1 + rot(x1,1) )^2 ): {x1Int}\n")
# Step 6. Perform the desired computation in CKKS
cPoly = cc.EvalAdd(cTemp, cc.EvalRotate(cTemp, 1))
cPoly = cc.EvalMult(cc.EvalMult(cPoly, cPoly), 0.25)
# Perform the precomputation for switching back to CKKS
cc.EvalCKKStoFHEWPrecompute(scale1)
# Tranform the ciphertext from CKKS to FHEW
cTemp1 = cc.EvalCKKStoFHEW(cPoly, slots)
print(f"\nFHEW decryption with plaintext modulus {pLWE1}: ", end="")
for i in range(len(cTemp1)):
result = ccLWE.Decrypt(privateKeyFHEW, cTemp1[i], pLWE1)
print(result, end=" ")
print("\n")
# Step 5'. Perform the scheme switching
cTemp = cc.EvalFHEWtoCKKS(ctxtsLWE2, slots, slots, pLWE2, 0, pLWE2)
print(f"\n---Input x2: {x2} encrypted under p = {pLWE2} and Q = {ctxtsLWE2[0].GetModulus()} ---\n")
print(f"round( 0.5 * (x2 + rot(x2,2) )^2 ): {x2Int}\n")
# Step 6'. Perform the desired computation in CKKS
cPoly = cc.EvalAdd(cTemp, cc.EvalRotate(cTemp, 2))
cPoly = cc.EvalMult(cc.EvalMult(cPoly, cPoly), 0.25)
# Perform the precomputation for switching back to CKKS
cc.EvalCKKStoFHEWPrecompute(scale2)
# Tranform the ciphertext from CKKS to FHEW
cTemp2 = cc.EvalCKKStoFHEW(cPoly, slots)
print(f"\nFHEW decryption with plaintext modulus {pLWE2}: ", end="")
for i in range(len(cTemp2)):
result = ccLWE.Decrypt(privateKeyFHEW, cTemp2[i], pLWE2)
print(result, end=" ")
print("\n")
def ComparisonViaSchemeSwitching():
print("\n-----ComparisonViaSchemeSwitching-----\n")
print("Output precision is only wrt the operations in CKKS after switching back.\n")
# Step 1: Setup CryptoContext for CKKS
scTech = FIXEDAUTO
multDepth = 17
if scTech == FLEXIBLEAUTOEXT:
multDepth += 1
scaleModSize = 50
firstModSize = 60
ringDim = 8192
sl = HEStd_NotSet
slBin = TOY
logQ_ccLWE = 25
slots = 16 # sparsely-packed
batchSize = slots
parameters = CCParamsCKKSRNS()
parameters.SetMultiplicativeDepth(multDepth)
parameters.SetScalingModSize(scaleModSize)
parameters.SetFirstModSize(firstModSize)
parameters.SetScalingTechnique(scTech)
parameters.SetSecurityLevel(sl)
parameters.SetRingDim(ringDim)
parameters.SetBatchSize(batchSize)
parameters.SetSecretKeyDist(UNIFORM_TERNARY)
parameters.SetKeySwitchTechnique(HYBRID)
parameters.SetNumLargeDigits(3)
cc = GenCryptoContext(parameters)
# Enable the features that you wish to use
cc.Enable(PKE)
cc.Enable(KEYSWITCH)
cc.Enable(LEVELEDSHE)
cc.Enable(ADVANCEDSHE)
cc.Enable(SCHEMESWITCH)
print(f"CKKS scheme is using ring dimension {cc.GetRingDimension()},\n and number of slots {slots}\n and supports a multiplicative depth of {multDepth}\n")
# Generate encryption keys.
keys = cc.KeyGen()
# Step 2: Prepare the FHEW cryptocontext and keys for FHEW and scheme switching
params = SchSwchParams()
params.SetSecurityLevelCKKS(sl)
params.SetSecurityLevelFHEW(slBin)
params.SetCtxtModSizeFHEWLargePrec(logQ_ccLWE)
params.SetNumSlotsCKKS(slots)
params.SetNumValues(slots)
privateKeyFHEW = cc.EvalSchemeSwitchingSetup(params)
ccLWE = cc.GetBinCCForSchemeSwitch()
cc.EvalSchemeSwitchingKeyGen(keys, privateKeyFHEW)
print(f"FHEW scheme is using lattice parameter {ccLWE.Getn()},\n logQ {logQ_ccLWE},\n and modulus q {ccLWE.Getq()}\n")
# Set the scaling factor to be able to decrypt; the LWE mod switch is performed on the ciphertext at the last level
pLWE1 = ccLWE.GetMaxPlaintextSpace() # Small precision
modulus_LWE = 1 << logQ_ccLWE
beta = ccLWE.GetBeta()
pLWE2 = int(modulus_LWE / (2 * beta)) # Large precision
scaleSignFHEW = 1.0
cc.EvalCompareSwitchPrecompute(pLWE2, scaleSignFHEW)
# Step 3: Encoding and encryption of inputs
x1 = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0]
x2 = [5.25] * slots
ptxt1 = cc.MakeCKKSPackedPlaintext(x1, 1, 0, None, slots)
ptxt2 = cc.MakeCKKSPackedPlaintext(x2, 1, 0, None, slots)
c1 = cc.Encrypt(keys.publicKey, ptxt1)
c2 = cc.Encrypt(keys.publicKey, ptxt2)
cDiff = cc.EvalSub(c1, c2)
# Step 4: CKKS to FHEW switching and sign evaluation to test correctness
pDiff = cc.Decrypt(keys.secretKey, cDiff)
pDiff.SetLength(slots)
print("Difference of inputs: ", end="")
for i in range(slots):
print(pDiff.GetRealPackedValue()[i], end=" ")
eps = 0.0001
print("\nExpected sign result from CKKS: ", end="")
for i in range(slots):
print(int(round(pDiff.GetRealPackedValue()[i] / eps) * eps < 0), end=" ")
print()
LWECiphertexts = cc.EvalCKKStoFHEW(cDiff, slots)
print("\nFHEW decryption with plaintext modulus ", pLWE2, ": ", end="")
for i in range(len(LWECiphertexts)):
plainLWE = ccLWE.Decrypt(privateKeyFHEW, LWECiphertexts[i], pLWE2)
print(plainLWE, end=" ")
print("\nExpected sign result in FHEW with plaintext modulus ", pLWE2, " and scale ", scaleSignFHEW, ": ", end="")
for i in range(slots):
print((int(round(pDiff.GetRealPackedValue()[i] * scaleSignFHEW)) % pLWE2 - pLWE2 / 2.0 >= 0), end=" ")
print()
print("Obtained sign result in FHEW with plaintext modulus ", pLWE2, " and scale ", scaleSignFHEW, ": ", end="")
LWESign = [None] * len(LWECiphertexts)
for i in range(len(LWECiphertexts)):
LWESign[i] = ccLWE.EvalSign(LWECiphertexts[i])
plainLWE = ccLWE.Decrypt(privateKeyFHEW, LWESign[i], 2)
print(plainLWE, end=" ")
print()
# Step 5'': Direct comparison via CKKS->FHEW->CKKS
cResult = cc.EvalCompareSchemeSwitching(c1, c2, slots, slots)
plaintextDec3 = cc.Decrypt(keys.secretKey, cResult)
plaintextDec3.SetLength(slots)
print(f"Decrypted switched result: {plaintextDec3}\n")
def ArgminViaSchemeSwitching():
print("\n-----ArgminViaSchemeSwitching-----\n")
print("Output precision is only wrt the operations in CKKS after switching back\n")
# Step 1: Setup CryptoContext for CKKS
scaleModSize = 50
firstModSize = 60
ringDim = 8192
sl = HEStd_NotSet
slBin = TOY
logQ_ccLWE = 25
arbFunc = False
oneHot = True # Change to false if the output should not be one-hot encoded
slots = 16 # sparsely-packed
batchSize = slots
numValues = 16
scTech = FIXEDMANUAL
multDepth = 9 + 3 + 1 + int(log2(numValues)) # 13 for FHEW to CKKS, log2(numValues) for argmin
if scTech == FLEXIBLEAUTOEXT:
multDepth += 1
parameters = CCParamsCKKSRNS()
parameters.SetMultiplicativeDepth(multDepth)
parameters.SetScalingModSize(scaleModSize)
parameters.SetFirstModSize(firstModSize)
parameters.SetScalingTechnique(scTech)
parameters.SetSecurityLevel(sl)
parameters.SetRingDim(ringDim)
parameters.SetBatchSize(batchSize)
cc = GenCryptoContext(parameters)
# Enable the features that you wish to use
cc.Enable(PKE)
cc.Enable(KEYSWITCH)
cc.Enable(LEVELEDSHE)
cc.Enable(ADVANCEDSHE)
cc.Enable(SCHEMESWITCH)
print("CKKS scheme is using ring dimension ", cc.GetRingDimension())
print(", and number of slots ", slots, ", and supports a depth of ", multDepth, "\n")
# Generate encryption keys
keys = cc.KeyGen()
# Step 2: Prepare the FHEW cryptocontext and keys for FHEW and scheme switching
params = SchSwchParams()
params.SetSecurityLevelCKKS(sl)
params.SetSecurityLevelFHEW(slBin)
params.SetCtxtModSizeFHEWLargePrec(logQ_ccLWE)
params.SetNumSlotsCKKS(slots)
params.SetNumValues(numValues)
params.SetComputeArgmin(True)
privateKeyFHEW = cc.EvalSchemeSwitchingSetup(params)
ccLWE = cc.GetBinCCForSchemeSwitch()
cc.EvalSchemeSwitchingKeyGen(keys, privateKeyFHEW)
print(f"FHEW scheme is using lattice parameter {ccLWE.Getn()},\n logQ {logQ_ccLWE},\n and modulus q {ccLWE.Getq()}\n")
# Scale the inputs to ensure their difference is correctly represented after switching to FHEW
scaleSign = 512
modulus_LWE = 1 << logQ_ccLWE
beta = ccLWE.GetBeta()
pLWE = int(modulus_LWE / (2 * beta)) # Large precision
cc.EvalCompareSwitchPrecompute(pLWE, scaleSign)
# Step 3: Encoding and encryption of inputs
x1 = [-1.125, -1.12, 5.0, 6.0, -1.0, 2.0, 8.0, -1.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.25, 15.30]
print("Expected minimum value ", min(x1), " at location ", x1.index(min(x1)))
print("Expected maximum value ", max(x1), " at location ", x1.index(max(x1)))
ptxt1 = cc.MakeCKKSPackedPlaintext(x1)
c1 = cc.Encrypt(keys.publicKey, ptxt1)
# Step 4: Argmin evaluation
result = cc.EvalMinSchemeSwitching(c1, keys.publicKey, numValues, slots)
ptxtMin = cc.Decrypt(keys.secretKey, result[0])
ptxtMin.SetLength(1)
print("Minimum value: ", ptxtMin)
ptxtMin = cc.Decrypt(keys.secretKey, result[1])
if oneHot:
ptxtMin.SetLength(numValues)
print("Argmin indicator vector: ", ptxtMin)
else:
ptxtMin.SetLength(1)
print("Argmin: ", ptxtMin)
result = cc.EvalMaxSchemeSwitching(c1, keys.publicKey, numValues, slots)
ptxtMax = cc.Decrypt(keys.secretKey, result[0])
ptxtMax.SetLength(1)
print("Maximum value: ", ptxtMax)
ptxtMax = cc.Decrypt(keys.secretKey, result[1])
if oneHot:
ptxtMax.SetLength(numValues)
print("Argmax indicator vector: ", ptxtMax)
else:
ptxtMax.SetLength(1)
print("Argmax: ", ptxtMax)
def ArgminViaSchemeSwitchingAlt():
print("\n-----ArgminViaSchemeSwitchingAlt-----\n")
print("Output precision is only wrt the operations in CKKS after switching back\n")
# Step 1: Setup CryptoContext for CKKS
scaleModSize = 50
firstModSize = 60
ringDim = 8192
sl = HEStd_NotSet
slBin = TOY
logQ_ccLWE = 25
arbFunc = False
oneHot = True
alt = True
slots = 16
batchSize = slots
numValues = 16
scTech = FIXEDAUTO
multDepth = 9 + 3 + 1 + int(log2(numValues))
parameters = CCParamsCKKSRNS()
parameters.SetMultiplicativeDepth(multDepth)
parameters.SetScalingModSize(scaleModSize)
parameters.SetFirstModSize(firstModSize)
parameters.SetScalingTechnique(scTech)
parameters.SetSecurityLevel(sl)
parameters.SetRingDim(ringDim)
parameters.SetBatchSize(batchSize)
cc = GenCryptoContext(parameters)
cc.Enable(PKE)
cc.Enable(KEYSWITCH)
cc.Enable(LEVELEDSHE)
cc.Enable(ADVANCEDSHE)
cc.Enable(SCHEMESWITCH)
print(f"CKKS scheme is using ring dimension {cc.GetRingDimension()},")
print(f"number of slots {slots}, and supports a multiplicative depth of {multDepth}\n")
keys = cc.KeyGen()
# Step 2: Prepare the FHEW cryptocontext and keys for FHEW and scheme switching
params = SchSwchParams()
params.SetSecurityLevelCKKS(sl)
params.SetSecurityLevelFHEW(slBin)
params.SetCtxtModSizeFHEWLargePrec(logQ_ccLWE)
params.SetNumSlotsCKKS(slots)
params.SetNumValues(numValues)
params.SetComputeArgmin(True)
params.SetUseAltArgmin(True)
privateKeyFHEW = cc.EvalSchemeSwitchingSetup(params)
ccLWE = cc.GetBinCCForSchemeSwitch()
cc.EvalSchemeSwitchingKeyGen(keys, privateKeyFHEW)
print(f"FHEW scheme is using lattice parameter {ccLWE.Getn()},\n logQ {logQ_ccLWE},\n and modulus q {ccLWE.Getq()}\n")
scaleSign = 512
modulus_LWE = 1 << logQ_ccLWE
beta = ccLWE.GetBeta()
pLWE = int(modulus_LWE / (2 * beta))
cc.EvalCompareSwitchPrecompute(pLWE, scaleSign)
# Step 3: Encoding and encryption of inputs
# Inputs
x1 = [-1.125, -1.12, 5.0, 6.0, -1.0, 2.0, 8.0, -1.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.25, 15.30]
print("Expected minimum value ", min(x1), " at location ", x1.index(min(x1)))
print("Expected maximum value ", max(x1), " at location ", x1.index(max(x1)))
# Encoding as plaintexts
ptxt1 = cc.MakeCKKSPackedPlaintext(x1) # Only if we set batchsize
# ptxt1 = cc.MakeCKKSPackedPlaintext(x1, 1, 0, None, slots) # If batchsize is not set
# Encrypt the encoded vectors
c1 = cc.Encrypt(keys.publicKey, ptxt1)
# Step 4: Argmin evaluation
result = cc.EvalMinSchemeSwitchingAlt(c1, keys.publicKey, numValues, slots)
ptxtMin = cc.Decrypt(keys.secretKey, result[0])
ptxtMin.SetLength(1)
print("Minimum value: ", ptxtMin)
ptxtMin = cc.Decrypt(keys.secretKey, result[1])
if oneHot:
ptxtMin.SetLength(numValues)
print("Argmin indicator vector: ", ptxtMin)
else:
ptxtMin.SetLength(1)
print("Argmin: ", ptxtMin)
result = cc.EvalMaxSchemeSwitchingAlt(c1, keys.publicKey, numValues, slots)
ptxtMax = cc.Decrypt(keys.secretKey, result[0])
ptxtMax.SetLength(1)
print("Maximum value: ", ptxtMax)
ptxtMax = cc.Decrypt(keys.secretKey, result[1])
if oneHot:
ptxtMax.SetLength(numValues)
print("Argmax indicator vector: ", ptxtMax)
else:
ptxtMax.SetLength(1)
print("Argmax: ", ptxtMax)
def ArgminViaSchemeSwitchingUnit():
print("\n-----ArgminViaSchemeSwitchingUnit-----\n")
print("Output precision is only wrt the operations in CKKS after switching back\n")
# Step 1: Setup CryptoContext for CKKS
scaleModSize = 50
firstModSize = 60
ringDim = 8192
sl = HEStd_NotSet
slBin = TOY
logQ_ccLWE = 25
arbFunc = False
oneHot = True