Skip to content

Latest commit

 

History

History
284 lines (216 loc) · 10.4 KB

README-zh_CN.md

File metadata and controls

284 lines (216 loc) · 10.4 KB

PDF-Extract-Kit

[[Models (🤗Hugging Face)]](https://huggingface.co/wanderkid/PDF-Extract-Kit) | [[Models(ModelScope)]](https://www.modelscope.cn/models/wanderkid/PDF-Extract-Kit)

English | 简体中文

👋 join us on Discord and WeChat

整体介绍

PDF文档中包含大量知识信息,然而提取高质量的PDF内容并非易事。为此,我们将PDF内容提取工作进行拆解:

  • 布局检测:使用LayoutLMv3模型进行区域检测,如图像表格,标题,文本等;
  • 公式检测:使用YOLOv8进行公式检测,包含行内公式行间公式
  • 公式识别:使用UniMERNet进行公式识别;
  • 光学字符识别:使用PaddleOCR进行文本识别;

注意: 由于文档类型的多样性,现有开源的布局检测和公式检测很难处理多样性的PDF文档,为此我们内容采集多样性数据进行标注和训练,使得在各类文档上取得精准的检测效果,细节参考布局检测公式检测部分。对于公式识别,UniMERNet方法可以媲美商业软件,在各种类型公式识别上均匀很高的质量。对于OCR,我们采用PaddleOCR,对中英文OCR效果不错。

PDF内容提取框架如下图所示

PDF-Extract-Kit输出格式
{
    "layout_dets": [    # 页中的元素
        {
            "category_id": 0, # 类别编号, 0~9,13~15
            "poly": [
                136.0, # 坐标为图片坐标,需要转换回pdf坐标, 顺序是 左上-右上-右下-左下的x,y坐标
                781.0,
                340.0,
                781.0,
                340.0,
                806.0,
                136.0,
                806.0
            ],
            "score": 0.69,   # 置信度
            "latex": ''      # 公式识别的结果,只有13,14有内容,其他为空,另外15是ocr的结果,这个key会换成text
        },
        ...
    ],
    "page_info": {         # 页信息:提取bbox时的分辨率大小,如果有缩放可以基于该信息进行对齐
        "page_no": 0,      # 页数
        "height": 1684,    # 页高
        "width": 1200      # 页宽
    }
}

其中category_id包含的类型如下:

{0: 'title',              # 标题
 1: 'plain text',         # 文本
 2: 'abandon',            # 包括页眉页脚页码和页面注释
 3: 'figure',             # 图片
 4: 'figure_caption',     # 图片描述
 5: 'table',              # 表格
 6: 'table_caption',      # 表格描述
 7: 'table_footnote',     # 表格注释
 8: 'isolate_formula',    # 行间公式(这个是layout的行间公式,优先级低于14)
 9: 'formula_caption',    # 行间公式的标号

 13: 'inline_formula',    # 行内公式
 14: 'isolated_formula',  # 行间公式
 15: 'ocr_text'}              # ocr识别结果

效果展示

结合多样性PDF文档标注,我们训练了鲁棒的布局检测公式检测模型。在论文、教材、研报、财报等多样性的PDF文档上,我们的pipeline都能得到准确的提取结果,对于扫描模糊、水印等情况也有较高鲁棒性。

评测指标

现有开源模型多基于Arxiv论文类型数据进行训练,面对多样性的PDF文档,提前质量远不能达到实用需求。相比之下,我们的模型经过多样化数据训练,可以适应各种类型文档提取。

评测代码及详细信息请看这里

布局检测

我们与现有的开源Layout检测模型做了对比,包括DocXchainSurya360LayoutAnalysis的两个模型。而LayoutLMv3-SFT指的是我们在LayoutLMv3-base-chinese预训练权重的基础上进一步做了SFT训练后的模型。论文验证集由402张论文页面构成,教材验证集由587张不同来源的教材页面构成。

模型 论文验证集 教材验证集
mAP AP50 AR50 mAP AP50 AR50
DocXchain 52.8 69.5 77.3 34.9 50.1 63.5
Surya 24.2 39.4 66.1 13.9 23.3 49.9
360LayoutAnalysis-Paper 37.7 53.6 59.8 20.7 31.3 43.6
360LayoutAnalysis-Report 35.1 46.9 55.9 25.4 33.7 45.1
LayoutLMv3-SFT 77.6 93.3 95.5 67.9 82.7 87.9

公式检测

我们与开源的模型Pix2Text-MFD做了对比。另外,YOLOv8-Trained是我们在YOLOv8l模型的基础上训练后的权重。论文验证集由255张论文页面构成,多源验证集由789张不同来源的页面构成,包括教材、书籍等。

模型 论文验证集 多源验证集
AP50 AR50 AP50 AR50
Pix2Text-MFD 60.1 64.6 58.9 62.8
YOLOv8-Trained 87.7 89.9 82.4 87.3

公式识别

BLEU

公式识别我们使用的是UniMERNet的权重,没有进一步的SFT训练,其精度验证结果可以在其GitHub页面获取。

使用教程

环境安装 (Linux)

conda create -n pipeline python=3.10

pip install -r requirements.txt

pip install --extra-index-url https://miropsota.github.io/torch_packages_builder detectron2==0.6+pt2.3.1cu121

安装完环境后,可能会遇到一些版本冲突导致版本变更,如果遇到了版本相关的报错,可以尝试下面的命令重新安装指定版本的库。

pip install pillow==8.4.0

除了版本冲突外,可能还会遇到torch无法调用的错误,可以先把下面的库卸载,然后重新安装cuda12和cudnn。

pip uninstall nvidia-cusparse-cu12

参考模型下载下载所需模型权重

在Windows上运行

如需要在Windows上运行本项目,请参考在Windows环境下使用PDF-Extract-Kit

在macOS上运行

如需要在macOS上运行本项目,请参考在macOS系统使用PDF-Extract-Kit

运行提取脚本

python pdf_extract.py --pdf data/pdfs/ocr_1.pdf

相关参数解释:

  • --pdf 待处理的pdf文件,如果传入一个文件夹,则会处理文件夹下的所有pdf文件。
  • --output 处理结果保存的路径,默认是"output"
  • --vis 是否对结果可视化,是则会把检测的结果可视化出来,主要是检测框和类别
  • --render 是否把识别得的结果渲染出来,包括公式的latex代码,以及普通文本,都会渲染出来放在检测框中。注意:此过程非常耗时,另外也需要提前安装xelateximagemagic

本项目专注使用模型对多样性文档进行高质量内容提取,不涉及提取后内容拼接成新文档,如PDF转Markdown。如果有此类需求,请参考我们另一个Github项目: MinerU

协议

本仓库的代码依照 Apache-2.0 协议开源。

使用模型权重时,请遵循对应的模型协议:LayoutLMv3 / UniMERNet / YOLOv8 / PaddleOCR.

致谢

Star历史

Star History Chart