Skip to content

Text Detection model DB #175

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jun 15, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 29 additions & 0 deletions models/text_detection_db/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
cmake_minimum_required(VERSION 3.24)
set(project_name "opencv_zoo_text_detection_db")

PROJECT (${project_name})

set(OPENCV_VERSION "4.7.0")
set(OPENCV_INSTALLATION_PATH "" CACHE PATH "Where to look for OpenCV installation")
find_package(OpenCV ${OPENCV_VERSION} REQUIRED HINTS ${OPENCV_INSTALLATION_PATH})
# Find OpenCV, you may need to set OpenCV_DIR variable
# to the absolute path to the directory containing OpenCVConfig.cmake file
# via the command line or GUI

file(GLOB SourceFile
"demo.cpp")
# If the package has been found, several variables will
# be set, you can find the full list with descriptions
# in the OpenCVConfig.cmake file.
# Print some message showing some of them
message(STATUS "OpenCV library status:")
message(STATUS " config: ${OpenCV_DIR}")
message(STATUS " version: ${OpenCV_VERSION}")
message(STATUS " libraries: ${OpenCV_LIBS}")
message(STATUS " include path: ${OpenCV_INCLUDE_DIRS}")

# Declare the executable target built from your sources
add_executable(${project_name} ${SourceFile})

# Link your application with OpenCV libraries
target_link_libraries(${project_name} PRIVATE ${OpenCV_LIBS})
18 changes: 18 additions & 0 deletions models/text_detection_db/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,8 @@ Note:

## Demo

### Python

Run the following command to try the demo:

```shell
Expand All @@ -23,6 +25,22 @@ python demo.py --input /path/to/image -v
python demo.py --help
```

### C++

Install latest OpenCV and CMake >= 3.24.0 to get started with:

```shell
# A typical and default installation path of OpenCV is /usr/local
cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation .
cmake --build build
# detect on camera input
./build/opencv_zoo_text_detection_db -m=/path/to/model
# detect on an image
./build/opencv_zoo_text_detection_db -m=/path/to/model -i=/path/to/image -v
# get help messages
./build/opencv_zoo_text_detection_db -h
```

### Example outputs

![mask](./example_outputs/mask.jpg)
Expand Down
179 changes: 179 additions & 0 deletions models/text_detection_db/demo.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,179 @@
#include <iostream>

#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>

using namespace std;
using namespace cv;
using namespace dnn;

vector< pair<cv::dnn::Backend, cv::dnn::Target> > backendTargetPairs = {
std::make_pair<cv::dnn::Backend, cv::dnn::Target>(dnn::DNN_BACKEND_OPENCV, dnn::DNN_TARGET_CPU),
std::make_pair<cv::dnn::Backend, cv::dnn::Target>(dnn::DNN_BACKEND_CUDA, dnn::DNN_TARGET_CUDA),
std::make_pair<cv::dnn::Backend, cv::dnn::Target>(dnn::DNN_BACKEND_CUDA, dnn::DNN_TARGET_CUDA_FP16),
std::make_pair<cv::dnn::Backend, cv::dnn::Target>(dnn::DNN_BACKEND_TIMVX, dnn::DNN_TARGET_NPU),
std::make_pair<cv::dnn::Backend, cv::dnn::Target>(dnn::DNN_BACKEND_CANN, dnn::DNN_TARGET_NPU)};


std::string keys =
"{ help h | | Print help message. }"
"{ model m | text_detection_DB_IC15_resnet18_2021sep.onnx | Usage: Set model type, defaults to text_detection_DB_IC15_resnet18_2021sep.onnx }"
"{ input i | | Usage: Path to input image or video file. Skip this argument to capture frames from a camera.}"
"{ width | 736 | Usage: Resize input image to certain width, default = 736. It should be multiple by 32.}"
"{ height | 736 | Usage: Resize input image to certain height, default = 736. It should be multiple by 32.}"
"{ binary_threshold | 0.3 | Usage: Threshold of the binary map, default = 0.3.}"
"{ polygon_threshold | 0.5 | Usage: Threshold of polygons, default = 0.5.}"
"{ max_candidates | 200 | Usage: Set maximum number of polygon candidates, default = 200.}"
"{ unclip_ratio | 2.0 | Usage: The unclip ratio of the detected text region, which determines the output size, default = 2.0.}"
"{ save s | true | Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.}"
"{ viz v | true | Usage: Specify to open a new window to show results. Invalid in case of camera input.}"
"{ backend bt | 0 | Choose one of computation backends: "
"0: (default) OpenCV implementation + CPU, "
"1: CUDA + GPU (CUDA), "
"2: CUDA + GPU (CUDA FP16), "
"3: TIM-VX + NPU, "
"4: CANN + NPU}";


class DB {
public:

DB(string modPath, Size inSize = Size(736, 736), float binThresh = 0.3,
float polyThresh = 0.5, int maxCand = 200, double unRatio = 2.0,
dnn::Backend bId = DNN_BACKEND_DEFAULT, dnn::Target tId = DNN_TARGET_CPU) : modelPath(modPath), inputSize(inSize), binaryThreshold(binThresh),
polygonThreshold(polyThresh), maxCandidates(maxCand), unclipRatio(unRatio),
backendId(bId), targetId(tId)
{
this->model = TextDetectionModel_DB(readNet(modelPath));
this->model.setPreferableBackend(backendId);
this->model.setPreferableTarget(targetId);

this->model.setBinaryThreshold(binaryThreshold);
this->model.setPolygonThreshold(polygonThreshold);
this->model.setUnclipRatio(unclipRatio);
this->model.setMaxCandidates(maxCandidates);

this->model.setInputParams(1.0 / 255.0, inputSize, Scalar(122.67891434, 116.66876762, 104.00698793));
}
pair< vector<vector<Point>>, vector<float> > infer(Mat image) {
CV_Assert(image.rows == this->inputSize.height && "height of input image != net input size ");
CV_Assert(image.cols == this->inputSize.width && "width of input image != net input size ");
vector<vector<Point>> pt;
vector<float> confidence;
this->model.detect(image, pt, confidence);
return make_pair< vector<vector<Point>> &, vector< float > &>(pt, confidence);
}

private:
string modelPath;
TextDetectionModel_DB model;
Size inputSize;
float binaryThreshold;
float polygonThreshold;
int maxCandidates;
double unclipRatio;
dnn::Backend backendId;
dnn::Target targetId;

};

Mat visualize(Mat image, pair< vector<vector<Point>>, vector<float> >&results, double fps=-1, Scalar boxColor=Scalar(0, 255, 0), Scalar textColor=Scalar(0, 0, 255), bool isClosed=true, int thickness=2)
{
Mat output;
image.copyTo(output);
if (fps > 0)
putText(output, format("FPS: %.2f", fps), Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, textColor);
polylines(output, results.first, isClosed, boxColor, thickness);
return output;
}

int main(int argc, char** argv)
{
CommandLineParser parser(argc, argv, keys);

parser.about("Use this program to run Real-time Scene Text Detection with Differentiable Binarization in opencv Zoo using OpenCV.");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}

int backendTargetid = parser.get<int>("backend");
String modelName = parser.get<String>("model");

if (modelName.empty())
{
CV_Error(Error::StsError, "Model file " + modelName + " not found");
}

Size inpSize(parser.get<int>("width"), parser.get<int>("height"));
float binThresh = parser.get<float>("binary_threshold");
float polyThresh = parser.get<float>("polygon_threshold");
int maxCand = parser.get<int>("max_candidates");
double unRatio = parser.get<float>("unclip_ratio");
bool save = parser.get<bool>("save");
bool viz = parser.get<float>("viz");

DB model(modelName, inpSize, binThresh, polyThresh, maxCand, unRatio, backendTargetPairs[backendTargetid].first, backendTargetPairs[backendTargetid].second);

//! [Open a video file or an image file or a camera stream]
VideoCapture cap;
if (parser.has("input"))
cap.open(parser.get<String>("input"));
else
cap.open(0);
if (!cap.isOpened())
CV_Error(Error::StsError, "Cannot opend video or file");
Mat originalImage;
static const std::string kWinName = modelName;
while (waitKey(1) < 0)
{
cap >> originalImage;
if (originalImage.empty())
{
cout << "Frame is empty" << endl;
waitKey();
break;
}
int originalW = originalImage.cols;
int originalH = originalImage.rows;
double scaleHeight = originalH / double(inpSize.height);
double scaleWidth = originalW / double(inpSize.width);
Mat image;
resize(originalImage, image, inpSize);

// inference
TickMeter tm;
tm.start();
pair< vector<vector<Point>>, vector<float> > results = model.infer(image);
tm.stop();
auto x = results.first;
// Scale the results bounding box
for (auto &pts : results.first)
{
for (int i = 0; i < 4; i++)
{
pts[i].x = int(pts[i].x * scaleWidth);
pts[i].y = int(pts[i].y * scaleHeight);
}
}
originalImage = visualize(originalImage, results, tm.getFPS());
tm.reset();
if (parser.has("input"))
{
if (save)
{
cout << "Result image saved to result.jpg\n";
imwrite("result.jpg", originalImage);
}
if (viz)
imshow(kWinName, originalImage);
}
else
imshow(kWinName, originalImage);
}
return 0;
}