|
| 1 | +#include <vector> |
| 2 | +#include <string> |
| 3 | +#include <utility> |
| 4 | + |
| 5 | +#include <opencv2/opencv.hpp> |
| 6 | + |
| 7 | +using namespace std; |
| 8 | +using namespace cv; |
| 9 | +using namespace dnn; |
| 10 | + |
| 11 | +vector< pair<dnn::Backend, dnn::Target> > backendTargetPairs = { |
| 12 | + std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_OPENCV, dnn::DNN_TARGET_CPU), |
| 13 | + std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_CUDA, dnn::DNN_TARGET_CUDA), |
| 14 | + std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_CUDA, dnn::DNN_TARGET_CUDA_FP16), |
| 15 | + std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_TIMVX, dnn::DNN_TARGET_NPU), |
| 16 | + std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_CANN, dnn::DNN_TARGET_NPU) }; |
| 17 | + |
| 18 | +vector<string> labelYolox = { |
| 19 | + "person", "bicycle", "car", "motorcycle", "airplane", "bus", |
| 20 | + "train", "truck", "boat", "traffic light", "fire hydrant", |
| 21 | + "stop sign", "parking meter", "bench", "bird", "cat", "dog", |
| 22 | + "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", |
| 23 | + "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", |
| 24 | + "skis", "snowboard", "sports ball", "kite", "baseball bat", |
| 25 | + "baseball glove", "skateboard", "surfboard", "tennis racket", |
| 26 | + "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", |
| 27 | + "banana", "apple", "sandwich", "orange", "broccoli", "carrot", |
| 28 | + "hot dog", "pizza", "donut", "cake", "chair", "couch", |
| 29 | + "potted plant", "bed", "dining table", "toilet", "tv", "laptop", |
| 30 | + "mouse", "remote", "keyboard", "cell phone", "microwave", |
| 31 | + "oven", "toaster", "sink", "refrigerator", "book", "clock", |
| 32 | + "vase", "scissors", "teddy bear", "hair drier", "toothbrush" }; |
| 33 | + |
| 34 | +class YoloX { |
| 35 | +private: |
| 36 | + Net net; |
| 37 | + string modelPath; |
| 38 | + Size inputSize; |
| 39 | + float confThreshold; |
| 40 | + float nmsThreshold; |
| 41 | + float objThreshold; |
| 42 | + dnn::Backend backendId; |
| 43 | + dnn::Target targetId; |
| 44 | + int num_classes; |
| 45 | + vector<int> strides; |
| 46 | + Mat expandedStrides; |
| 47 | + Mat grids; |
| 48 | + |
| 49 | +public: |
| 50 | + YoloX(string modPath, float confThresh = 0.35, float nmsThresh = 0.5, float objThresh = 0.5, dnn::Backend bId = DNN_BACKEND_DEFAULT, dnn::Target tId = DNN_TARGET_CPU) : |
| 51 | + modelPath(modPath), confThreshold(confThresh), |
| 52 | + nmsThreshold(nmsThresh), objThreshold(objThresh), |
| 53 | + backendId(bId), targetId(tId) |
| 54 | + { |
| 55 | + this->num_classes = int(labelYolox.size()); |
| 56 | + this->net = readNet(modelPath); |
| 57 | + this->inputSize = Size(640, 640); |
| 58 | + this->strides = vector<int>{ 8, 16, 32 }; |
| 59 | + this->net.setPreferableBackend(this->backendId); |
| 60 | + this->net.setPreferableTarget(this->targetId); |
| 61 | + this->generateAnchors(); |
| 62 | + } |
| 63 | + |
| 64 | + void setBackendAndTarget(dnn::Backend bId, dnn::Target tId) |
| 65 | + { |
| 66 | + this->backendId = bId; |
| 67 | + this->targetId = tId; |
| 68 | + this->net.setPreferableBackend(this->backendId); |
| 69 | + this->net.setPreferableTarget(this->targetId); |
| 70 | + } |
| 71 | + |
| 72 | + Mat preprocess(Mat img) |
| 73 | + { |
| 74 | + Mat blob; |
| 75 | + Image2BlobParams paramYolox; |
| 76 | + paramYolox.datalayout = DNN_LAYOUT_NCHW; |
| 77 | + paramYolox.ddepth = CV_32F; |
| 78 | + paramYolox.mean = Scalar::all(0); |
| 79 | + paramYolox.scalefactor = Scalar::all(1); |
| 80 | + paramYolox.size = Size(img.cols, img.rows); |
| 81 | + paramYolox.swapRB = true; |
| 82 | + |
| 83 | + blob = blobFromImageWithParams(img, paramYolox); |
| 84 | + return blob; |
| 85 | + } |
| 86 | + |
| 87 | + Mat infer(Mat srcimg) |
| 88 | + { |
| 89 | + Mat inputBlob = this->preprocess(srcimg); |
| 90 | + |
| 91 | + this->net.setInput(inputBlob); |
| 92 | + vector<Mat> outs; |
| 93 | + this->net.forward(outs, this->net.getUnconnectedOutLayersNames()); |
| 94 | + |
| 95 | + Mat predictions = this->postprocess(outs[0]); |
| 96 | + return predictions; |
| 97 | + } |
| 98 | + |
| 99 | + Mat postprocess(Mat outputs) |
| 100 | + { |
| 101 | + Mat dets = outputs.reshape(0,outputs.size[1]); |
| 102 | + Mat col01; |
| 103 | + add(dets.colRange(0, 2), this->grids, col01); |
| 104 | + Mat col23; |
| 105 | + exp(dets.colRange(2, 4), col23); |
| 106 | + vector<Mat> col = { col01, col23 }; |
| 107 | + Mat boxes; |
| 108 | + hconcat(col, boxes); |
| 109 | + float* ptr = this->expandedStrides.ptr<float>(0); |
| 110 | + for (int r = 0; r < boxes.rows; r++, ptr++) |
| 111 | + { |
| 112 | + boxes.rowRange(r, r + 1) = *ptr * boxes.rowRange(r, r + 1); |
| 113 | + } |
| 114 | + // get boxes |
| 115 | + Mat boxes_xyxy(boxes.rows, boxes.cols, CV_32FC1, Scalar(1)); |
| 116 | + Mat scores = dets.colRange(5, dets.cols).clone(); |
| 117 | + vector<float> maxScores(dets.rows); |
| 118 | + vector<int> maxScoreIdx(dets.rows); |
| 119 | + vector<Rect2d> boxesXYXY(dets.rows); |
| 120 | + |
| 121 | + for (int r = 0; r < boxes_xyxy.rows; r++, ptr++) |
| 122 | + { |
| 123 | + boxes_xyxy.at<float>(r, 0) = boxes.at<float>(r, 0) - boxes.at<float>(r, 2) / 2.f; |
| 124 | + boxes_xyxy.at<float>(r, 1) = boxes.at<float>(r, 1) - boxes.at<float>(r, 3) / 2.f; |
| 125 | + boxes_xyxy.at<float>(r, 2) = boxes.at<float>(r, 0) + boxes.at<float>(r, 2) / 2.f; |
| 126 | + boxes_xyxy.at<float>(r, 3) = boxes.at<float>(r, 1) + boxes.at<float>(r, 3) / 2.f; |
| 127 | + // get scores and class indices |
| 128 | + scores.rowRange(r, r + 1) = scores.rowRange(r, r + 1) * dets.at<float>(r, 4); |
| 129 | + double minVal, maxVal; |
| 130 | + Point maxIdx; |
| 131 | + minMaxLoc(scores.rowRange(r, r+1), &minVal, &maxVal, nullptr, &maxIdx); |
| 132 | + maxScoreIdx[r] = maxIdx.x; |
| 133 | + maxScores[r] = float(maxVal); |
| 134 | + boxesXYXY[r].x = boxes_xyxy.at<float>(r, 0); |
| 135 | + boxesXYXY[r].y = boxes_xyxy.at<float>(r, 1); |
| 136 | + boxesXYXY[r].width = boxes_xyxy.at<float>(r, 2); |
| 137 | + boxesXYXY[r].height = boxes_xyxy.at<float>(r, 3); |
| 138 | + } |
| 139 | + |
| 140 | + vector< int > keep; |
| 141 | + NMSBoxesBatched(boxesXYXY, maxScores, maxScoreIdx, this->confThreshold, this->nmsThreshold, keep); |
| 142 | + Mat candidates(int(keep.size()), 6, CV_32FC1); |
| 143 | + int row = 0; |
| 144 | + for (auto idx : keep) |
| 145 | + { |
| 146 | + boxes_xyxy.rowRange(idx, idx + 1).copyTo(candidates(Rect(0, row, 4, 1))); |
| 147 | + candidates.at<float>(row, 4) = maxScores[idx]; |
| 148 | + candidates.at<float>(row, 5) = float(maxScoreIdx[idx]); |
| 149 | + row++; |
| 150 | + } |
| 151 | + if (keep.size() == 0) |
| 152 | + return Mat(); |
| 153 | + return candidates; |
| 154 | + |
| 155 | + } |
| 156 | + |
| 157 | + |
| 158 | + void generateAnchors() |
| 159 | + { |
| 160 | + vector< tuple<int, int, int> > nb; |
| 161 | + int total = 0; |
| 162 | + |
| 163 | + for (auto v : this->strides) |
| 164 | + { |
| 165 | + int w = this->inputSize.width / v; |
| 166 | + int h = this->inputSize.height / v; |
| 167 | + nb.push_back(tuple<int, int, int>(w * h, w, v)); |
| 168 | + total += w * h; |
| 169 | + } |
| 170 | + this->grids = Mat(total, 2, CV_32FC1); |
| 171 | + this->expandedStrides = Mat(total, 1, CV_32FC1); |
| 172 | + float* ptrGrids = this->grids.ptr<float>(0); |
| 173 | + float* ptrStrides = this->expandedStrides.ptr<float>(0); |
| 174 | + int pos = 0; |
| 175 | + for (auto le : nb) |
| 176 | + { |
| 177 | + int r = get<1>(le); |
| 178 | + for (int i = 0; i < get<0>(le); i++, pos++) |
| 179 | + { |
| 180 | + *ptrGrids++ = float(i % r); |
| 181 | + *ptrGrids++ = float(i / r); |
| 182 | + *ptrStrides++ = float((get<2>(le))); |
| 183 | + } |
| 184 | + } |
| 185 | + } |
| 186 | +}; |
| 187 | + |
| 188 | +std::string keys = |
| 189 | +"{ help h | | Print help message. }" |
| 190 | +"{ model m | object_detection_yolox_2022nov.onnx | Usage: Path to the model, defaults to object_detection_yolox_2022nov.onnx }" |
| 191 | +"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}" |
| 192 | +"{ confidence | 0.5 | Class confidence }" |
| 193 | +"{ obj | 0.5 | Enter object threshold }" |
| 194 | +"{ nms | 0.5 | Enter nms IOU threshold }" |
| 195 | +"{ save s | true | Specify to save results. This flag is invalid when using camera. }" |
| 196 | +"{ vis v | 1 | Specify to open a window for result visualization. This flag is invalid when using camera. }" |
| 197 | +"{ backend bt | 0 | Choose one of computation backends: " |
| 198 | +"0: (default) OpenCV implementation + CPU, " |
| 199 | +"1: CUDA + GPU (CUDA), " |
| 200 | +"2: CUDA + GPU (CUDA FP16), " |
| 201 | +"3: TIM-VX + NPU, " |
| 202 | +"4: CANN + NPU}"; |
| 203 | + |
| 204 | +pair<Mat, double> letterBox(Mat srcimg, Size targetSize = Size(640, 640)) |
| 205 | +{ |
| 206 | + Mat paddedImg(targetSize.height, targetSize.width, CV_32FC3, Scalar::all(114.0)); |
| 207 | + Mat resizeImg; |
| 208 | + |
| 209 | + double ratio = min(targetSize.height / double(srcimg.rows), targetSize.width / double(srcimg.cols)); |
| 210 | + resize(srcimg, resizeImg, Size(int(srcimg.cols * ratio), int(srcimg.rows * ratio)), INTER_LINEAR); |
| 211 | + resizeImg.copyTo(paddedImg(Rect(0, 0, int(srcimg.cols * ratio), int(srcimg.rows * ratio)))); |
| 212 | + return pair<Mat, double>(paddedImg, ratio); |
| 213 | +} |
| 214 | + |
| 215 | +Mat unLetterBox(Mat bbox, double letterboxScale) |
| 216 | +{ |
| 217 | + return bbox / letterboxScale; |
| 218 | +} |
| 219 | + |
| 220 | +Mat visualize(Mat dets, Mat srcimg, double letterbox_scale, double fps = -1) |
| 221 | +{ |
| 222 | + Mat resImg = srcimg.clone(); |
| 223 | + |
| 224 | + if (fps > 0) |
| 225 | + putText(resImg, format("FPS: %.2f", fps), Size(10, 25), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 0, 255), 2); |
| 226 | + |
| 227 | + for (int row = 0; row < dets.rows; row++) |
| 228 | + { |
| 229 | + Mat boxF = unLetterBox(dets(Rect(0, row, 4, 1)), letterbox_scale); |
| 230 | + Mat box; |
| 231 | + boxF.convertTo(box, CV_32S); |
| 232 | + float score = dets.at<float>(row, 4); |
| 233 | + int clsId = int(dets.at<float>(row, 5)); |
| 234 | + |
| 235 | + int x0 = box.at<int>(0, 0); |
| 236 | + int y0 = box.at<int>(0, 1); |
| 237 | + int x1 = box.at<int>(0, 2); |
| 238 | + int y1 = box.at<int>(0, 3); |
| 239 | + |
| 240 | + string text = format("%s : %f", labelYolox[clsId].c_str(), score * 100); |
| 241 | + int font = FONT_HERSHEY_SIMPLEX; |
| 242 | + int baseLine = 0; |
| 243 | + Size txtSize = getTextSize(text, font, 0.4, 1, &baseLine); |
| 244 | + rectangle(resImg, Point(x0, y0), Point(x1, y1), Scalar(0, 255, 0), 2); |
| 245 | + rectangle(resImg, Point(x0, y0 + 1), Point(x0 + txtSize.width + 1, y0 + int(1.5 * txtSize.height)), Scalar(255, 255, 255), -1); |
| 246 | + putText(resImg, text, Point(x0, y0 + txtSize.height), font, 0.4, Scalar(0, 0, 0), 1); |
| 247 | + } |
| 248 | + |
| 249 | + return resImg; |
| 250 | +} |
| 251 | + |
| 252 | +int main(int argc, char** argv) |
| 253 | +{ |
| 254 | + CommandLineParser parser(argc, argv, keys); |
| 255 | + |
| 256 | + parser.about("Use this script to run Yolox deep learning networks in opencv_zoo using OpenCV."); |
| 257 | + if (parser.has("help")) |
| 258 | + { |
| 259 | + parser.printMessage(); |
| 260 | + return 0; |
| 261 | + } |
| 262 | + |
| 263 | + string model = parser.get<String>("model"); |
| 264 | + float confThreshold = parser.get<float>("confidence"); |
| 265 | + float objThreshold = parser.get<float>("obj"); |
| 266 | + float nmsThreshold = parser.get<float>("nms"); |
| 267 | + bool vis = parser.get<bool>("vis"); |
| 268 | + bool save = parser.get<bool>("save"); |
| 269 | + int backendTargetid = parser.get<int>("backend"); |
| 270 | + |
| 271 | + if (model.empty()) |
| 272 | + { |
| 273 | + CV_Error(Error::StsError, "Model file " + model + " not found"); |
| 274 | + } |
| 275 | + |
| 276 | + YoloX modelNet(model, confThreshold, nmsThreshold, objThreshold, |
| 277 | + backendTargetPairs[backendTargetid].first, backendTargetPairs[backendTargetid].second); |
| 278 | + //! [Open a video file or an image file or a camera stream] |
| 279 | + VideoCapture cap; |
| 280 | + if (parser.has("input")) |
| 281 | + cap.open(samples::findFile(parser.get<String>("input"))); |
| 282 | + else |
| 283 | + cap.open(0); |
| 284 | + if (!cap.isOpened()) |
| 285 | + CV_Error(Error::StsError, "Cannot opend video or file"); |
| 286 | + Mat frame, inputBlob; |
| 287 | + double letterboxScale; |
| 288 | + |
| 289 | + static const std::string kWinName = model; |
| 290 | + int nbInference = 0; |
| 291 | + while (waitKey(1) < 0) |
| 292 | + { |
| 293 | + cap >> frame; |
| 294 | + if (frame.empty()) |
| 295 | + { |
| 296 | + cout << "Frame is empty" << endl; |
| 297 | + waitKey(); |
| 298 | + break; |
| 299 | + } |
| 300 | + pair<Mat, double> w = letterBox(frame); |
| 301 | + inputBlob = get<0>(w); |
| 302 | + letterboxScale = get<1>(w); |
| 303 | + TickMeter tm; |
| 304 | + tm.start(); |
| 305 | + Mat predictions = modelNet.infer(inputBlob); |
| 306 | + tm.stop(); |
| 307 | + cout << "Inference time: " << tm.getTimeMilli() << " ms\n"; |
| 308 | + Mat img = visualize(predictions, frame, letterboxScale, tm.getFPS()); |
| 309 | + if (vis) |
| 310 | + { |
| 311 | + imshow(kWinName, img); |
| 312 | + } |
| 313 | + } |
| 314 | + return 0; |
| 315 | +} |
0 commit comments