-
Notifications
You must be signed in to change notification settings - Fork 310
/
train_simple.py
327 lines (295 loc) · 11.5 KB
/
train_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import json
import os
import random
import subprocess
from typing import Dict, List, Optional
import fire
import numpy as np
import torch
from datasets import load_dataset, load_from_disk
import weak_to_strong.logger as logger
from weak_to_strong.common import get_tokenizer
from weak_to_strong.datasets import (VALID_DATASETS, load_dataset,
tokenize_dataset)
from weak_to_strong.loss import logconf_loss_fn, product_loss_fn, xent_loss
from weak_to_strong.train import ModelConfig, train_and_save_model
# NOTE learning rates are not particularly tuned, work somewhat reasonably at train batch size 32
MODEL_CONFIGS = [
ModelConfig(
name="gpt2",
default_lr=5e-5,
eval_batch_size=32,
),
ModelConfig(
name="gpt2-medium",
default_lr=5e-5,
eval_batch_size=32,
),
ModelConfig(
name="gpt2-large",
default_lr=1e-5,
eval_batch_size=32,
),
ModelConfig(
name="gpt2-xl",
default_lr=1e-5,
eval_batch_size=2,
gradient_checkpointing=True,
# Should use model_parallel on V100s (note: ironically if you have a single V100 it should run,
# but if you have multiple it won't run without model_parallel because of the overhead of data
# parallel training).
model_parallel=(
torch.cuda.get_device_properties(0).total_memory < 35e9
and torch.cuda.device_count() > 1
),
),
ModelConfig(
name="Qwen/Qwen-1_8B",
default_lr=1e-5,
eval_batch_size=2,
gradient_checkpointing=True,
model_parallel=(
torch.cuda.get_device_properties(0).total_memory < 35e9
and torch.cuda.device_count() > 1
),
custom_kwargs={
"trust_remote_code": True,
"bf16": torch.cuda.is_bf16_supported(),
"fp32": not torch.cuda.is_bf16_supported(),
"revision": "5fde88dff770a7d036847211f5d9d9705f0caa69",
},
),
ModelConfig(
name="Qwen/Qwen-7B",
default_lr=1e-5,
eval_batch_size=2,
gradient_checkpointing=True,
model_parallel=True,
# note: you will probably not be able to run this without many gpus
custom_kwargs={
"trust_remote_code": True,
"bf16": torch.cuda.is_bf16_supported(),
"fp32": not torch.cuda.is_bf16_supported(),
"revision": "d4efd21e866b9cb3466cb65b963933f5e98016d1",
},
),
ModelConfig(
name="Qwen/Qwen-14B",
default_lr=1e-5,
eval_batch_size=2,
gradient_checkpointing=True,
model_parallel=True,
# note: you will probably not be able to run this bf16 support and without many gpus
custom_kwargs={
"trust_remote_code": True,
"bf16": torch.cuda.is_bf16_supported(),
"fp32": not torch.cuda.is_bf16_supported(),
"revision": "8be2854218fea9054331e217fd26a06f3fd02004",
},
),
ModelConfig(
name="Qwen/Qwen-72B",
default_lr=1e-5,
eval_batch_size=1,
gradient_checkpointing=True,
model_parallel=True,
# note: you will probably not be able to run this without bf16 support and many gpus
custom_kwargs={
"trust_remote_code": True,
"bf16": torch.cuda.is_bf16_supported(),
"fp32": not torch.cuda.is_bf16_supported(),
"revision": "fec78c0e3b3b10dd9f0ce775c34a686a3255a7d1",
},
# This model is really big, save space by using adafactor.
# Note that even then it will take up ~60GB per GPU on an 8-GPU machine.
default_optimizer="adafactor",
),
]
MODELS_DICT: Dict[str, ModelConfig] = {
model_config.name: model_config for model_config in MODEL_CONFIGS
}
loss_dict = {
"logconf": logconf_loss_fn(),
"product": product_loss_fn(),
"xent": xent_loss(),
}
VALID_LOSSES: List[str] = list(loss_dict.keys())
def get_config_foldername(config: dict) -> str:
def shorten_key(key: str) -> str:
return "".join(word[0] for word in key.split("_"))
def shorten_value(value) -> str:
if isinstance(value, bool):
return "1" if value else "0"
elif isinstance(value, str):
value = value.split("/")[-1]
if "_" in value:
return "_".join(word[:4] for word in value.split("_"))
else:
return value
else:
return str(value)
return "-".join(f"{shorten_key(k)}={shorten_value(v)}" for k, v in sorted(config.items()))
def main(
batch_size: int = 32,
max_ctx: int = 1024,
ds_name: str = "sciq",
loss: str = "xent",
n_docs: int = 20000,
n_test_docs: int = 10000,
model_size: str = "gpt2",
lr: Optional[float] = None,
optim: Optional[str] = None,
epochs: int = 2,
force_retrain: bool = False,
seed: int = 0,
minibatch_size_per_device: Optional[float] = None,
train_with_dropout: bool = False,
results_folder: str = "/tmp/results",
linear_probe: bool = False,
lr_schedule: str = "cosine_anneal",
# Note: you can pass either weak_model_size or weak_labels_path. If you pass
# weak_model_size, we will guess the path to the weak labels based on the weak
# model. If you pass weak_labels_path, we will use that path instead.
# If you pass neither, we will train on ground truth.
weak_model_size: Optional[str] = None,
weak_labels_path: Optional[str] = None,
sweep_subfolder: str = "default",
# Set to a very large value so that by default we don't do any intermediate evals but
# still do final evals (which requires eval_every to be set to a non-zero, non-None value)
eval_every: int = 1000000,
sync_command: Optional[str] = None,
):
# this is per device!
if minibatch_size_per_device is None:
minibatch_size_per_device = 1
assert ds_name in VALID_DATASETS, f"Unknown dataset {ds_name} not in {VALID_DATASETS}"
assert (
weak_model_size is None or weak_labels_path is None
), "Can't pass both weak_model_size and weak_labels_path"
model_config = MODELS_DICT[model_size]
use_default_lr = False
if lr is None:
assert (
batch_size == 32
), "Learning rates were tuned on batch size 32, you probably want to sweep LR if you are tuning batch size"
lr = model_config.default_lr
use_default_lr = True
if optim is None:
optim = model_config.default_optimizer
# The commented out terms are the ones that should not change final results
config = {
"batch_size": batch_size,
"max_ctx": max_ctx,
"ds_name": ds_name,
"loss": loss,
"n_docs": n_docs,
"n_test_docs": n_test_docs,
"model_size": model_size,
"lr": lr,
"optim": optim,
"epochs": epochs,
# "force_retrain": force_retrain,
"seed": seed,
# "minibatch_size_per_device": minibatch_size_per_device,
"train_with_dropout": train_with_dropout,
# "results_folder": results_folder,
"linear_probe": linear_probe,
"lr_schedule": lr_schedule,
"eval_every": eval_every,
# "sweep_subfolder": sweep_subfolder,
}
if weak_model_size is not None:
weak_model_config = config.copy()
weak_model_config["model_size"] = weak_model_size
weak_model_config["loss"] = "xent"
if use_default_lr:
weak_model_config["lr"] = MODELS_DICT[weak_model_size].default_lr
weak_model_config_name = get_config_foldername(weak_model_config)
weak_labels_path = (
results_folder + "/" + sweep_subfolder + "/" + weak_model_config_name + "/weak_labels"
)
eval_batch_size = model_config.eval_batch_size
random.seed(seed)
# Load dataset
dataset = load_dataset(ds_name, seed=seed, split_sizes=dict(train=n_docs, test=n_test_docs))
# Split the training dataset in half
train_dataset, test_ds = dataset["train"], dataset["test"]
if weak_labels_path is None:
split_data = train_dataset.train_test_split(test_size=0.5, seed=seed)
train1_ds, train2_ds = split_data["train"], split_data["test"]
print("len(train1):", len(train1_ds), "len(train2):", len(train2_ds))
config_name = get_config_foldername(config)
else:
if not weak_labels_path.endswith("weak_labels"):
weak_labels_path = weak_labels_path + "/weak_labels"
if sync_command is not None:
sync_command_list = sync_command.split(" ")
sync_command_list.extend(
["download", weak_labels_path.replace("/weak_labels", ""), results_folder]
)
print(f"Running sync command: {' '.join(sync_command_list)}")
result = subprocess.run(sync_command_list, check=True)
if result.returncode != 0:
raise RuntimeError(f"Sync command failed with return code {result.returncode}")
train1_ds = load_from_disk(weak_labels_path)
train2_ds = None
weak_model_config = json.load(open(weak_labels_path.replace("weak_labels", "config.json")))
config["weak_model_size"] = weak_model_config["model_size"]
config_name = get_config_foldername(config)
config["weak_model"] = weak_model_config
save_path = os.path.join(results_folder, sweep_subfolder, config_name)
logger.configure(
name="{sweep_subfolder}_{config_name}_{datetime_now}",
save_path=save_path,
sweep_subfolder=sweep_subfolder,
config_name=config_name,
)
# Tokenize datasets
tokenizer = get_tokenizer(model_config.name)
train1_ds = tokenize_dataset(train1_ds, tokenizer, max_ctx)
test_ds = tokenize_dataset(test_ds, tokenizer, max_ctx)
if train2_ds:
train2_ds = tokenize_dataset(train2_ds, tokenizer, max_ctx)
loss_fn = loss_dict[loss]
print(f"Training model model, size {model_size}")
test_results, weak_ds = train_and_save_model(
model_config,
train1_ds,
test_ds,
inference_ds=train2_ds,
batch_size=batch_size,
save_path=save_path,
loss_fn=loss_fn,
lr=lr,
epochs=epochs,
force_retrain=force_retrain,
eval_batch_size=eval_batch_size,
minibatch_size_per_device=minibatch_size_per_device,
train_with_dropout=train_with_dropout,
linear_probe=linear_probe,
lr_schedule=lr_schedule,
optimizer_name=optim,
eval_every=eval_every,
)
if weak_ds is not None:
weak_ds.save_to_disk(save_path + "/" + "weak_labels")
acc = np.mean([x["acc"] for x in test_results])
res_dict = {"accuracy": acc}
print("accuracy:", acc)
with open(os.path.join(save_path, f"config.json"), "w") as f:
json.dump(config, f, indent=2)
with open(os.path.join(save_path, f"results_summary.json"), "w") as f:
json.dump(res_dict, f, indent=2)
if sync_command is not None:
print("Syncing results to remote storage...")
try:
sync_command_list = sync_command.split(" ")
sync_command_list.extend(["upload", save_path, results_folder])
print(f"Running sync command: {' '.join(sync_command_list)}")
result = subprocess.run(sync_command_list, check=True)
if result.returncode != 0:
raise RuntimeError(f"Sync command failed with return code {result.returncode}")
except Exception as e:
raise RuntimeError("Failed to sync results to remote storage.") from e
if __name__ == "__main__":
fire.Fire(main)